참고문헌
- Abbas, I.A. (2015), "Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer", J. Cent. South Univ., 22, 1606-1613. https://doi.org/10.1007/s11771-015-2677-5.
- Abbas, I.A. and Zenkour, A.M. (2014), "The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory", J. Comput. Theor. Nanosci., 11(2), 331-338. https://doi.org/10.1166/jctn.2014.3356.
- Abbas, I.A., Saeed, T. and Alhothuali, M. (2020), "Hyperbolic two-temperature photo-thermal interaction in a semiconductor medium with a cylindrical cavity", Silicon, 13, 1871-1878. https://doi.org/10.1007/s12633-020-00570-7.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Khan, A. (2017), "Rotational effects on magneto-thermoelastic stoneley, love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order", Comput. Mater. Contin., 53(1), 49-72. https://doi.org/10.3970/cmc.2017.053.052.
- Abo-Dahab, S.M. (2013), "Surface waves in coupled and generalized thermoelasticity", Encyclopedia Therm. Stress., 2(1), 4764-4774. https://doi.org/10.1007/978-94-007-2739-7_371.
- Abo-Dahab, S.M. (2015), "Propagation of Stoneley waves in magneto-thermoplastic materials with voids and two relaxation time", J. Vib. Control, 21(6), 1144-1153. https://doi.org/10.1177/1077546313493651.
- Boley, B.A. and Tolins, I.S. (1962), "Transient coupled thermoelastic boundary value problem in the half space", J. Appl. Mech., 29, 637-646. https://doi.org/10.1115/1.3640647.
- Chadwick, P. and Currie, P.K. (1974), "Stoneley waves at an inter-face between elastic crystals", Quart. J. Mech. Appl. Math., 27(4), 497-503. https://doi.org/10.1093/qjmam/27.4.497.
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two parameters", Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 19, 614-627. http://doi.org/10.1007/BF01594969.
- Chen, P.J. Gurtin, M.E. and Williams, W.O. (1968), "A note on non simple heat conduction", Z. fur Angew. Math. Phys. (ZAMP), 19, 969-970. http://doi.org/10.1007/BF01602278.
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non simple elastic materials with two temperatures", Z. fur Angew. Math. Phys., 20, 107-112. https://doi.org/10.1007/BF01591120.
- Debnath, S., Singh, S.S. and Othman, M.I.A. (2024), "Stoneley waves in isotropic crustal rocks under the theory of generalized thermoelastic diffusion", Int. J. Comput. Mater. Sci. Eng., 2350044. https://doi.org/10.1142/S2047684123500446.
- Hawker, K.E. (1978), "Influence of Stoneley waves on plane-wave reflection coefficients: Characteristics of bottom reflection loss", J. Acoust. Soc. Am., 64, 548-555. https://doi.org/10.1121/1.382006.
- Hobiny, A. and Abbas, I.A. (2021), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Bas. Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055.
- Hobiny, A.D. and Abbas, I.A. (2020) "Nonlinear analysis of dual-phase lag bio-heat model in living tissues induced by laser irradiation", J. Therm. Stress., 43, 503-511. https://doi.org/10.1080/01495739.2020.1722050.
- Hornby, B.E., Johnson, D.L., Winkler, K.H. and Plumb, R.A. (1989), "Fracture evaluation using reflected Stoneley-wave arrivals", Geophys., 54, 1274-1288. https://doi.org/10.1190/1.1442587.
- Kaur, I. and Lata, P. (2020), "Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation", GEM-Int. J. Geomath., 11(4), 1-17. https://doi.org/10.1007/s13137-020-0140-8.
- Kuznetsov, S.V. (2002), "Forbidden planes for Rayleigh waves", Quart. Appl. Math., 60(1), 87-97. http://doi.org/10.1090/qam/1878260.
- Kuznetsov, S.V. (2020), "Stoneley wave velocity variation", J. Theor. Comput. Acoust., 30(01), 2050030. http://doi.org/10.1142/S2591728520500309.
- Lata, P. and Himanshi (2021), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. https://doi.org/10.12989/cme.2021.3.1.057.
- Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isoropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141-150. https://doi.org/10.12989/scs.2021.38.2.141.
- Lata, P., Kumar, R. and Sharma, N, (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
- Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", Analele Stiintifice ale Univ. Ovidius Constanta, Ser. Mat., 22(1), 169-188. https://doi.org/10.2478/auom-2014-0014.
- Marin, M., Craciun, E.M. and Pop, N. (2020), "Some results in Green-Lindsay thermoelasticity of bodies with dipolar structure", Math., 8, 497-509. http://doi.org/10.3390/math8040497.
- Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of saint-venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09.
- Marin, M., Hobiny, A. and Abbas, I.A. (2021), "The effects of fractional time derivatives in porothermoelastic materials using Finite Element Method", Math., 9, 1606. https://dx.doi.org/10.3390/math9141606.
- Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
- Murty, G.S. (1975), "Wave propagation at unbonded interface between two elastic half-spaces", J. Acoust. Soc. Am., 58(5), 1094-1095. https://doi.org/10.1016/0031-9201(75)90076-X.
- Ning, L., Kewen, W., Peng, L., Hongliang, W., Zhou, F., Huajun, F. and David, S. (2021), "Experimental study on attenuation of Stoneley wave under different fracture factors", Pet. Explor. Dev., 48(2), 299-307. https://doi.org/10.1016/S1876-3804(21)60024-1.
- Othman, M.I. and Song, Y.Q, (2006), "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mechanica, 184, 89-204. http://doi.org/10.1007/s00707-006-0337-4.
- Othman, M.I. and Song, Y.Q. (2008), "Reflection of magneto-thermoelastic waves from a rotating elastic half-space", Int. J. Eng. Sci., 46, 459-474. https://doi.org/10.1016/j.ijengsci.2007.12.004.
- Saeed, T. and Abbas, I.A. (2020), "Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data", Mech. Bas. Des. Struct. Mach., 50, 1287-1297. https://doi.org/10.1080/15397734.2020.1749068.
- Sharma, N., Kumar, R. and Lata, P. (2015), "Effect of two temperature and anisotropy in an axisymmetric problem in transversely isotropic thermoelastic solid without energy dissipation and with two-temperature", Am. J. Eng. Res., 4(7), 176-187.
- Singh, S. and Tochhawng, L. (2019), "Stoneley and Rayleigh waves in thermoelastic materials with voids", J. Vib. Control, 25(14), 2053-2062. https://doi.org/10.1177/1077546319847850.
- Stoneley, R. (1924), "Elastic waves at the surface of separation of two solids", Proc. Roy. Soc. London, 106(738), 416-428. https://doi.org/10.1098/rspa.1924.0079.
- Tajuddin, M. (1995), "Existence of stoneley waves at an unbounded interface between two micropolar elastic half spaces", J. Appl. Mech., 62(1), 255-257. https://doi.org/10.1115/1.2895919
- Tang, X.M. and Cheng, C.H. (2006), "Borehole Stoneley wave propagation across permeable structures", Geophys. Prospect., 41(2), 165-187. https://doi.org/10.1111/j.1365-2478.1993.tb00864.x.
- Tang, X.M., Cheng, C.H. and Toksoz, M.N. (1991), "Dynamic permeability and borehole Stoneley waves: A simplified Biot-Rosenbaum model", J. Acoust. Soc. Am., 90, 1632-1646. https://doi.org/10.1190/1.1889947.
- Ting, T.C. (2004), "Surface waves in a rotating anisotropic elastic half-space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005.
- Tomar S.K. and Singh, D. (2006), "Propagation of Stoneley waves at an interface between two microstretch elastic half-spaces", J. Vib. Control, 12(9), 995-1009. https://doi.org/10.1177/1077546306068689.
- Warren, W.E. and Chen, P. (1973), "Wave propagation in the two-temperature theory of thermoelasticity", Acta Mechanica, 16, 21-33. https://doi.org/10.1007/BF01177123.