DOI QR코드

DOI QR Code

A Study on the Drift Characteristics of the Yellow Sea Using the Finite Element Model

유한요소 모형을 이용한 황해의 표류 특성 연구

  • Sang-Shin Byun (Republic of Korea Naval Academy) ;
  • Jin-Hee Yuk (Korea Institute of Science and Technology Information)
  • 변상신 (해군사관학교 해양학과) ;
  • 육진희 (한국과학기술정보연구원 슈퍼컴퓨팅응용센터)
  • Received : 2024.09.06
  • Accepted : 2024.10.10
  • Published : 2024.10.31

Abstract

This study investigates the drift characteristics of the Yellow Sea using a finite element model. A tidal model of the Yellow Sea was constructed, and its accuracy was verified by comparing the calculated tide levels and tidal current results with observed data. Six points with distinct tidal characteristics were selected across different areas of the Yellow Sea, and the drift paths due to tidal currents were analyzed. Additionally, the drift paths under the influence of increasing wind, in combination with tidal currents, were examined. At the point where a north-south reciprocating current occurs, the particle movement distance increases when a southwesterly wind blows, compared to the influence of the currents alone. On the other hand, at the point characterized by a counterclockwise elliptical current, the drift distance either increases or decreases depending on the location. The relationship between wind and water depth was analyzed, revealing that the shallower the water depth, the greater the wind's influence, leading to increased particle movement.

본 연구에서는 유한요소 모델을 이용하여 황해의 표류 특성을 조사하였다. 황해 전체에 대한 조석 모델을 구축하고, 시뮬레이션한 조위 및 조류 결과를 관측 자료와 비교하여 모델을 검증하였다. 황해의 각 해역별로 조류 특성이 뚜렷하게 구별되는 6개 지점을 선정하여 조류에 의한 표류 경로를 분석하였고, 조류 외에 바람의 영향이 순차적으로 증가할 때 나타나는 표류 경로를 추가적으로 분석하였다. 남북 왕복 조류가 나타나는 지점에서는 남서풍이 불때 조류의 영향에 비해 입자의 이동 거리가 증가하였다. 반면, 반시계 방향의 타원 조류 특성이 나타나는 지점에서는 거리가 감소하는 곳과 증가하는 곳으로 구분되는 것을 확인하였다. 이동 거리에 대한 바람 및 수심과의 관계를 분석한 결과, 수심이 얕을수록 바람의 영향이 커지고 입자의 이동 거리가 더욱 증가하는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 2024년 정부(과학기술정보통신부)의 재원 '초거대 계산기술 확보를 통한 과학·공학 초거대문제 해결 연구·지원(K24L2M1C4)' 및 2024년 해군사관학교 해양연구소 학술연구과제 연구비의 지원으로 수행된 연구임.

References

  1. Byun, S.-S., Choi, B.H. and Kim, K.O. (2009). Realtime tide and storm-surge computations for the yellow sea using the parallel finite element model. J. KIMS Technol., 12(1), 29-36.
  2. Byun, S.-S. and Cho, C.-B. (2022). Coastal upwelling observed off the East coast of Korea and variability of passive sound detection environment. J. Acous. Soc. Korea, 41(6), 601-609.
  3. Byun, S.-S., Park, J.J., Chang, K.-I. and Schmitt, R.W. (2010). Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett., 37.
  4. Choi, B.H., Byun, S.S. and Kim, K.O. (2001). Tidal computations for the Yellow Sea by parallel finite element advanced circulation model. Proceeding of Korean Society of Coastal and Ocean Engineers, 12, 108-118.
  5. Choi, B.H., Mun, J.Y., Cho, W.H. and Kim, K.O. (2012). Preparing wide-area depth-elevation and shoreline data for forecast models. The proceeding of 2012 the Korean Association of Ocean Science and Technology Societies, 400.
  6. Choi, B.H., Min, B.I., Kim, K.O. and Yuk, J.-H. (2013). Wave-tidesurge coupled simulation for typhoon Maemi. China Ocean Eng., 27(2), 141-158.
  7. Dill, N. (2007). Hydrodyamic modeling of a hypothetical river diversion near Empire, Louisiana. Thesis submitted in partial fulfillment of the Master of Science Degree in Civil Engineering, Louisiana State University.
  8. Kim, K.O. (2000). Tide Estimation in the Yellow Sea and East China Sea Using Finite Element Model. Master's thesis, Sungkyunkwan University.
  9. Luettich, Jr. R.A., Westerink, J.J. and Scheffner, N.W. (1992). ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program. Tech. Rep. DRP-92-6. 143.
  10. Luettich, R.A. and Westerink, J.J. (2004). Formulation and numerical implementation of the 2D/3D ADCIRC finite element model. version 44.XX.
  11. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr., 56, 567-581.
  12. Min, B.I., Kim, K.O., Lee, H.S., Yuk, J.-H. and Choi, B.H. (2011). Disturbances in tidal and sedimentation regimes at Saemangeum due to a dike. J. Coast. Res., 64(SI), 576-580.
  13. URS Corp. et al. (2007). Mississippi River Reintroduction into Maurepas Swamp Project PO-29, Volume VII of VII Diversion Modeling. Report prepared for the Louisiana Department of Natural Resources and U.S. Environmental Protection Agency.
  14. Yuk, J.-H., Choi, B.H. and Kim, K.O. (2011). Changes of tides in Isahaya Bay due to a barrier. KSCE Journal of Civil Engineering, 15(3), 427-437.
  15. Yuk, J.-H., Kim, K.O. and Choi, B.H. (2014). Tidal current simulation in the Maenggol Channel. 2014 the Korean Association of Ocean Science and Technology Societies special workshop