DOI QR코드

DOI QR Code

Compressive strength of masonry structures through metaheuristics optimization algorithms

  • Ziqi Liu (Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester) ;
  • Hossein Moayedi (Institute of Research and Development, Duy Tan University) ;
  • Mehmet Akif Cifci (Department of Computer Engineering, Bandirma Onyedi Eylul University) ;
  • Mohammad Hannan (Former student, Department Of Mathematics, Shiraz University Of Technology) ;
  • Erkut Sayin (Firat University, Department of Civil Engineering)
  • 투고 : 2023.10.07
  • 심사 : 2024.10.12
  • 발행 : 2024.09.25

초록

This study presents a comparative analysis of three nature-inspired algorithms-Black Hole Algorithm (BHA), Earthworm Optimization Algorithm (EWA), and Future Search Algorithm (FSA)-for predicting the compressive strength of masonry structures. Each algorithm was integrated with a Multilayer Perceptron (MLP) model, using a structural dimension, rebound number, ultrasonic pulse velocity, and failure load dataset. The dataset was divided into training (70%) and testing (30%) subsets to evaluate model performance. Root Mean Square Error (RMSE) and the coefficient of determination (R2) were employed as statistical indices to measure accuracy. The BHA-MLP model achieved the best performance, with an RMSE of 0.04731 and an R2 of 0.9995 for the training dataset and an RMSE of 0.06537 and an R2 of 0.99877 for the testing dataset, securing the highest overall score. FSA-MLP ranked second, demonstrating strong predictive performance, followed by EWA-MLP, which performed with lower accuracy but still showed valuable results. The study highlights the potential of using these nature-inspired optimization algorithms to enhance the predictive accuracy of compressive strength in masonry structures, offering insights for engineering and policymaking to improve structural safety and performance.

키워드

참고문헌

  1. Ahmadi Dehrashid, A., Dong, H., Fatahizadeh, M., Gholizadeh Touchaei, H., Gor, M., Moayedi, H., Salari, M. and Thi, Q.T. (2024), "A new procedure for optimizing neural network using stochastic algorithms in predicting and assessing landslide risk in East Azerbaijan", Stochastic Environmental Research and Risk Assessment, 1-30. https://doi.org/10.1007/s00477-024-02690-7
  2. Algaifi, H.A., Bakar, S.A., Alyousef, R., Sam, A.R.M., Alqarni, A.S., Ibrahim, M., Shahidan, S., Ibrahim, M. and Salami, B.A. (2021), "Machine learning and RSM models for prediction of compressive strength of smart bio-concrete", Smart Struct. Syst., Int. J., 28(4), 535-551. https://doi.org/10.12989/sss.2021.28.4.535
  3. Ali, A., Zhang, C., Bibi, T. and Sun, L. (2024), "Experimental investigation of sliding-based isolation system with re-centering functions for seismic protection of masonry structures", Structures, 60, 105871. https://doi.org/10.1016/j.istruc.2024.105871
  4. Alkayem, N.F., Shen, L., Mayya, A., Asteris, P.G., Fu, R., Di Luzio, G., Strauss, A. and Cao, M. (2023), "Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives", J. Build. Eng., 83, 108369. https://doi.org/10.1016/j.jobe.2023.108369
  5. Alyami, M., Khan, M., Fawad, M., Nawaz, R., Hammad, A.W.A., Najeh, T. and Gamil, Y. (2024), "Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms", Case Studies in Construction Materials, 20, e02728. https://doi.org/10.1016/j.cscm.2023.e02728
  6. Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two nondestructive test indexes", Geomech. Eng., Int. J., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317
  7. Asteris, P.G., Apostolopoulou, M., Armaghani, D., Cavaleri, L., Chountalas, A., Guney, D., Hajihassani, M., Hasanipanah, M., Khandelwal, M. and Karamani, C. (2020), "On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength", 11(1), 063. https://doi.org/10.12989/mca.2020.1.1.063
  8. Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Kotsonis, E.A. and Lourenco, P.B. (2021), "Prediction of cement-based mortars compressive strength using machine learning techniques", Neural Computing and Applications, 33(19), 13089-13121. https://doi.org/10.1007/s00521-021-06004-8
  9. Asteris, P.G., Karoglou, M., Skentou, A.D., Vasconcelos, G., He, M., Bakolas, A., Zhou, J. and Armaghani, D.J. (2024), "Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data", Ultrasonics, 141, 107347. https://doi.org/10.1016/j.ultras.2024.107347
  10. Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, Int. J., 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
  11. Bogas, J.A., Gomes, M.G. and Gomes, A. (2013), "Compressive strength evaluation of structural lightweight concrete by nondestructive ultrasonic pulse velocity method", Ultrasonics, 53(5), 962-972. https://doi.org/10.1016/j.ultras.2012.12.012
  12. Brencich, A. and Sterpi, E. (2006), "Compressive strength of solid clay brick masonry: calibration of experimental tests and theoretical issues", Struct. Anal. Histor. Constr., 1-8.
  13. Cao, J., Du, J., Zhang, H., He, H., Bao, C. and Liu, Y. (2024), "Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates", Constr. Build. Mater., 433, 136608. https://doi.org/10.1016/j.conbuildmat.2024.136608
  14. Chai, S., Wang, S., Liu, C., Liu, X., Liu, T. and Yang, R. (2024), "A visual measurement algorithm for vibration displacement of rotating body using semantic segmentation network", Expert Syst. Applicat., 237, 121306. https://doi.org/10.1016/j.eswa.2023.121306
  15. Charter, I. (2003), "Principles for the analysis, conservation and structural restoration of architectural heritage", Proceedings of the ICOMOS 14th General Assembly in Victoria Falls, Victoria Falls, Zimbabwe, pp. 27-31.
  16. Chen, R.-S., Zhang, H.-Y., Hao, X.-K., Yu, H.-X., Shi, T., Zhou, H.-S., Wang, R.-B., Zhao, Z.-F. and Wang, P. (2024), "Experimental study on ultimate bearing capacity of short thin-walled steel tubes reinforced with high-ductility concrete", Structures, 68, 107109. https://doi.org/10.1016/j.istruc.2024.107109
  17. Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85. https://doi.org/10.12989/acc.2023.15.2.085
  18. Elsisi, M. (2019), "Future search algorithm for optimization", Evolutionary Intelligence, 12(1), 21-31. https://doi.org/10.21203/rs.3.rs-2769987/v1
  19. Faghfouri, A., Vosoughifar, H. and Hosseininejad, S. (2023), "Optimal sensor placement of retrofitted concrete slabs with nanoparticle strips using novel DECOMAC approach", Smart Struct. Syst., Int. J., 31(6), 545-559. http://doi.org/10.12989/sss.2023.31.6.545
  20. Feng, X., Ma, G., Su, S.-F., Huang, C., Boswell, M.K. and Xue, P. (2020), "A multilayer perceptron approach for accelerated wave forecasting in Lake Michigan", Ocean Eng., 211, 107526. https://doi.org/10.1016/j.oceaneng.2020.107526
  21. Haddadvand, R., Sohrabi, N., Yan, T.X., Nadalinia, F. and Karouei, S.H.H. (2024), "Numerical study on the influence of flow direction and fluid type on heat transfer and pressure drop in a two-tube spiral heat exchanger with innovative conical turbulators", Case Stud. Thermal Eng., 61, 104933. https://doi.org/10.1016/j.csite.2024.104933
  22. Hagan, M.T., Demuth, H.B. and Beale, M. (1997), Neural network design, PWS Publishing Co.
  23. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  24. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266
  25. Janamala, V., Kamal Kumar, U. and Pandraju, T.K.S. (2021), "Future search algorithm for optimal integration of distributed generation and electric vehicle fleets in radial distribution networks considering techno-environmental aspects", SN Applied Sciences, 3(4), 464. https://doi.org/10.1007/s42452-021-04466-y
  26. Kardani, N., Bardhan, A., Samui, P., Nazem, M., Asteris, P.G. and Zhou, A. (2022), "Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients", Int. J. Thermal Sci., 173, 107427. https://doi.org/10.1016/j.ijthermalsci.2021.107427
  27. Koksal, H.O., Karakoc, C. and Yildirim, H. (2005), "Compression behavior and failure mechanisms of concrete masonry prisms", J. Mater Civil Eng., 17(1), 107-115. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:1(107)
  28. Koopialipoor, M., Asteris, P.G., Mohammed, A.S., Alexakis, D.E., Mamou, A. and Armaghani, D.J. (2022), "Introducing stacking machine learning approaches for the prediction of rock deformation", Transport. Geotech., 34, 100756. https://doi.org/10.1016/j.trgeo.2022.100756
  29. Kubat, M. (1995), "Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence", by Bart Kosko, Prentice Hall, Englewood Cliffs, NJ, USA, pp. 449,£ 24.96, ISBN 0-13-612334, The Knowledge Engineering Review 10(2), 219-220. http://doi:10.1017/S0269888900008225
  30. Kumar, S., Datta, D. and Singh, S.K. (2015), "Black hole algorithm and its applications", Computat. Intell. Applicat. Model. Control, 147-170. http://doi.org/10.1007/978-3-319-11017-2_7
  31. Liou, S.-W., Wang, C.-M. and Huang, Y.-F. (2009), "Integrative Discovery of Multifaceted Sequence Patterns by Frame-Relayed Search and Hybrid PSO-ANN", J. Univers. Comput. Sci., 15(4), 742-764.
  32. Lu, D., Wang, G., Du, X. and Wang, Y. (2017), "A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete", Int. J. Impact Eng., 103, 124-137. https://doi.org/10.1016/j.ijimpeng.2017.01.011
  33. Marani, A. and Nehdi, M.L. (2020), "Machine learning prediction of compressive strength for phase change materials integrated cementitious composites", Constr. Build. Mater., 265, 120286. https://doi.org/10.1016/j.conbuildmat.2020.120286
  34. Masi, A. and Chiauzzi, L. (2013), "An experimental study on the within-member variability of in situ concrete strength in RC building structures", Constr. Build. Mater., 47, 951-961. https://doi.org/10.1016/j.conbuildmat.2013.05.102
  35. McCord-Nelson, M. and Illingworth, W.T. (1991), A practical guide to neural nets, Addison-Wesley Longman Publishing Co., Inc.
  36. Mishra, M., Bhatia, A.S. and Maity, D. (2020a), "Predicting the compressive strength of unreinforced brick masonry using machine learning techniques validated on a case study of a museum through nondestructive testing", J. Civil Struct. Health Monitor., 10(3), 389-403. https://doi.org/10.1007/s13349-020-00391-7
  37. Mishra, P., Samui, P. and Sinha, S. (2020b), "Determination of reliability index of the retaining wall using artificial intelligence techniques", Metaheur. Comput. Applicat., Int. J., 1(1), 043. https://doi.org/10.12989/mca.2020.1.1.043
  38. Mishra, M., Bhatia, A.S. and Maity, D. (2021), "A comparative study of regression, neural network and neuro-fuzzy inference system for determining the compressive strength of brick-mortar masonry by fusing nondestructive testing data", Eng. Comput., 37(1), 77-91. https://doi.org/10.1007/s00366-019-00810-4
  39. Moayedi, H. and Khasmakhi, M.A.S.A. (2022), "Wildfire susceptibility mapping using two empowered machine learning algorithms", Stochast. Environ. Res. Risk Assess., 37, 49-72. https://doi.org/10.1007/s00477-022-02273-4
  40. Moayedi, H. and Le, B.N. (2024), "The development of four efficient optimal neural network methods in forecasting shallow foundation", Comput. Concrete, Int. J., 34(2), 151-168. https://doi.org/10.12989/cac.2024.34.2.151
  41. Moayedi, H., Ghareh, S. and Foong, L.K. (2022), "Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling", Eng. Comput., 38(2), 1331-1347. https://doi.org/10.1007/s00366-020-01277-4
  42. Moayedi, H., Ahmadi Dehrashid, A. and Nguyen Le, B. (2024), "A novel problem-solving method by multi-computational optimisation of artificial neural network for modelling and prediction of the flow erosion processes", Eng. Applicat. Computat. Fluid Mech., 18(1), 2300456. https://doi.org/10.1080/19942060.2023.2300456
  43. Poorisat, T., Aigwi, I.E., Doan, D.T. and GhaffarianHoseini, A. (2024), "Unlocking the potentials of sustainable building designs and practices: A Systematic Review", Building and Environment, 266, 112069. https://doi.org/10.1016/j.buildenv.2024.112069
  44. Ronghui, S. and Liangrong, N. (2022), "An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management", Eng. Comput., 38(4), 2663-2680. https://doi.org/10.1007/s00366-021-01420-9
  45. Sabbag, N. and Uyanik, O. (2017), "Prediction of reinforced concrete strength by ultrasonic velocities", J. Appl. Geophys., 141, 13-23. https://doi.org/10.1016/j.jappgeo.2017.04.005
  46. Shu, J., Yu, H., Liu, G., Duan, Y., Hu, H. and Zhang, H. (2025), "DF-CDM: Conditional diffusion model with data fusion for structural dynamic response reconstruction", Mech. Syst. Signal Process., 222, 111783. https://doi.org/10.1016/j.ymssp.2024.111783
  47. Siow, P.Y., Ong, Z.C., Khoo, S.Y., Lim, K.-S. and Chew, B.T. (2023), "Hybrid machine learning with mode shape assessment for damage identification of plates", Smart Struct. Syst., Int. J., 31(5), 485-500. https://doi.org/10.12989/sss.2023.31.5.485
  48. Sohrabi, N., Haddadvand, R. and Nabi, H. (2024), "Numerical investigation of the effect of fluid nanohybrid type and volume concentration of fluid on heat transfer and pressure drop in spiral double tube heat exchanger equipped with innovative conical turbulator", Case Stud. Thermal Eng., 60, 104751. https://doi.org/10.1016/j.csite.2024.104751
  49. Sun, R., Wang, S., Li, M. and Zhu, Y. (2025), "An algorithm for large-span flexible bridge pose estimation and multi-keypoint vibration displacement measurement", Measurement, 240, 115582. https://doi.org/10.1016/j.measurement.2024.115582
  50. Taylor, K.E. (2001), "Summarizing multiple aspects of model performance in a single diagram", J. Geophys. Res.: Atmospheres, 106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719
  51. Wang, Y. and Sigmund, O. (2023), "Multi-material topology optimization for maximizing structural stability under thermomechanical loading", Comput. Methods Appl. Mech. Eng., 407, 115938. https://doi.org/10.1016/j.jrmge.2023.11.025
  52. Wang, Y. and Sigmund, O. (2024), "Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint", Struct. Multidiscipl. Optimiz., 67(1), 5. https://doi.org/10.1007/s00158-023-03698-3
  53. Wang, G.-G., Deb, S. and Coelho, L.D.S. (2018), "Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems", Int. J. Bio-Inspired Computat., 12(1), 1-22. https://doi.org/10.1504/IJBIC.2018.093328
  54. Wang, G., Mukhtar, A., Moayedi, H., Khalilpoor, N. and Tt, Q. (2024), "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector", Energy, 298, 131312. https://doi.org/10.1016/j.energy.2024.131312
  55. Wu, Z., Moayedi, H., Salari, M., Le, B.N. and Ahmadi Dehrashid, A. (2024), "Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches", Stochast. Environ. Res. Risk Assess., 1-18. https://doi.org/10.1007/s00477-024-02727-x
  56. Ye, D., Ahmadi Dehrashid, H., Moayedi, H. and Ahmadi Dehrashid, A. (2024), "Investigating the spatial foundations of rural entrepreneurship development using a hybrid method of MCDM, ANN and DTree algorithm", Environ. Develop. Sustainabil., 1-33. https://doi.org/10.1007/s10668-024-04739-7
  57. Yoon, S. and Lee, Y.-J. (2023), "A surrogate model-based framework for seismic resilience estimation of bridge transportation networks", Smart Struct. Syst., Int. J., 32(1), 49-59. https://doi.org/10.12989/sss.2023.32.1.049
  58. Zhao, Y., Moayedi, H., Foong, L.K. and Thi, Q.T. (2024), "Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength", Smart Struct. Syst., Int. J., 33(1), 65-91. https://doi.org/10.12989/sss.2024.33.1.065
  59. Zhou, X., Lu, D., Du, X., Wang, G. and Meng, F. (2020), "A 3D non-orthogonal plastic damage model for concrete", Comput. Methods Appl. Mech. Eng., 360, 112716. https://doi.org/10.1016/j.cma.2019.112716
  60. Zurada, J. (1992), Introduction to artificial neural systems, West Publishing Co.