DOI QR코드

DOI QR Code

An assembled arc-shaped pendulum TMD with constant eddy current damping for structural vibration control

  • Shuli Wei (School of Civil and Environment Engineering, Harbin Institute of Technology (Shenzhen)) ;
  • Jian Wang (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) ;
  • Jinping Ou (School of Civil and Environment Engineering, Harbin Institute of Technology (Shenzhen))
  • 투고 : 2022.11.09
  • 심사 : 2023.10.11
  • 발행 : 2024.09.25

초록

Pendulum tuned mass damper with eddy current damping (EC-PTMD) is a promising TMD device for vibration control of structures. Previous study focused primarily on the plate-like configuration of EC-PTMD, which motion of inertial mass is approximately horizontal. However, uneven distribution of damping force, non-constant damping and low energy efficiency will be resulted. This study developed a newly assembled pendulum tuned mass damper with constant eddy current damping (AEC-PTMD) in the form of arc. The proposed AEC-PTMD consists of a rigid suspension with sufficient lateral stiffness to keep inertial mass motion in a plane, the conductor plate fixed on the baseplate, and arc-shaped back iron acted as inertial mass placed on two sides of conductor plate. Meanwhile, the arc-shaped permanent magnets (PMs) are embedded into both sides of back iron to overcome the normal attraction and enhance greater magnetic density. Based on the Biot-Savart Law, the analytical expressions of magnetic flux distribution for arc-shaped PM are derived and assessed. Meanwhile, the effect of ferromagnetic media on magnetic flux distribution of arc-shaped PM is analyzed, which utilized a parameterization formula for the distance from the surface of the PM to a point outside. Further, the 3D finite element model (FEM) of an AEC-PTMD unit is established to evaluate the accuracy of the analytical results. A prototype of the proposed AEC-PTMD unit has been fabricated and laboratory experiments are conducted for the purpose of validating analytical and FEM results. All of these results have a good agreement.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China under Grant No. 51921006.

참고문헌

  1. Amezquita-Sanchez, J.P., Dominguez-Gonzalez, A., Sedaghati, R., Romero-Troncoso, R.J. and Osornio-Rios, R.A. (2014), "Vibration control on smart civil structures: A review", Mech. Adv. Mater. Struct., 21(1), 23-38. https://doi.org/10.1080/15376494.2012.677103
  2. Ao, W.K. and Reynolds, P. (2019), "Evaluation of eddy current damper for vibration control of a frame structure", J. Phys. Commun., 3(5), 055013. https://doi.org/10.1088/2399-6528/ab1deb
  3. COMSOL Inc. (2013), http://www.comsol.com.
  4. Contreras, M.T., Pasala, D.T. and Nagarajaiah, S. (2014), "Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change", Smart Struct. Syst., Int. J., 13(2), 219-233. http://doi.org/10.12989/sss.2014.13.2.219
  5. Diez-Jimenez, E., Rizzo, R., Gomez-Garcia, M.J. and Corral-Abad, E. (2019), "Review of passive electromagnetic devices for vibration damping and isolation", Shock Vib., Article ID 1250707. https://doi.org/10.1155/2019/1250707
  6. Domenico, D.D. and Ricciardi, G. (2018), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. D., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098
  7. Domizio, M., Ambrosini, D. and Curadelli, O. (2015), "Performance of TMDs on nonlinear structures subjected to near-fault earthquakes", Smart Mater. Struct., 16(4), 725-742. http://dx.doi.org/10.12989/sss.2015.16.4.725
  8. Ebrahimi, B., Khamesee, M.B. and Golnaraghi, F. (2009), "Eddy current damper feasibility in automobile suspension: modeling, simulation and testing", Smart Mater. Struct., 18(1), 015017. http://doi.org/10.1088/0964-1726/18/1/015017
  9. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Annual Review Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015
  10. Gerges, R. and Vickery, B. (2005), "Optimum design of pendulum type tuned mass dampers", Struct. Design Tall Spec. Build., 14(4), 353-368. https://doi.org/10.1002/tal.273
  11. Gou, X.F, Yang, Y. and Zheng, X.J. (2004), "Analytic expression of magnetic field distribution of rectangular permanent magnets", Appl. Math. Mech., 25(3), 297-306. https://doi.org/10.1007/bf02437333
  12. Haus, H.A., Melcher, J.R., Zahn, M. and Silva, M.L. (1989), Electromagnetic Fields and Energy, Prentice Hall, NJ, USA.
  13. Korkmaz, S. (2011), "A review of active structural control: challenges for engineering informatics", Comput. Struct., 89, 2113-2132. https://doi.org/10.1016/j.compstruc.2011.07.010
  14. Lenggana, B.W., Ubaidillah, U., Imaduddin, F., Choi, S.B., Purwana, Y.M. and Harjana, H. (2021), "Review of magnetorheological damping systems on a seismic building", Appl. Sci., 11(19), 9339. https://doi.org/10.3390/app11199339
  15. Li, J.Y., Zhu, S. and Shen, J. (2019), "Enhance the damping density of eddy current and electromagnetic dampers", Smart Struct. Syst., Int. J., 24(1), 15-26. https://doi.org/10.12989/sss.2019.24.1.015
  16. Lu, X.L., Zhang, Q., Weng D.G., Zhou, Z.G., Wang, S.S., Mahin, S.A., Ding, S.W. and Qian, F. (2016), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monitor., 24(3), e1882. https://doi.org/10.1002/stc.1882
  17. Matta, E. (2019), "A novel bidirectional pendulum tuned mass damper using variable homogeneous friction to achieve amplitude-independent control", Earthq. Eng. Struct. D., 48(6), 653-677. https://doi.org/10.1002/eqe.3153
  18. Mehrtash, M. and Khamesee, M.B. (2013), "Modeling and analysis of eddy-current damping effect in horizontal motions for a high-precision magnetic navigation platform", IEEE Trans. Magnet., 49(8), 4801-4810. http://doi.org/10.1109/TMAG.2013.2245675
  19. Mohanta, R.K., Chelliah, T.R., Allamsetty, S., Akula, A. and Ghosh, R. (2017), "Sources of vibration and their treatment in hydro power stations-A review", Eng. Sci. Technol., 20(2), 637-648. https://doi.org/10.1016/j.jestch.2016.11.004
  20. Nagarajaiah, S. (2009), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform", Struct. Control Health Monitor., 16(7-8), 800-841. https://doi.org/10.1002/stc.349
  21. Niu, H.W., Chen, Z.Q., Hua, X.G. and Zhang, W.Z. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727
  22. Ou, J.P. (2003), Structural vibration control: active, semi-active and intelligent control, Science Press, Beijing, China. [in Chinese]
  23. Pasala, D.T. and Nagarajaiah, S. (2014), "Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time", Smart Struct. Syst., Int. J., 13(2), 219-233. http://dx.doi.org/10.12989/sss.2014.13.2.203
  24. Pluk, K.J.W., Beek, T.A., Jansen, J.W. and Lomonova, E.A. (2014), "Modeling and measurements on a finite rectangular conducting plate in an eddy current damper", IEEE Transact. Industr. Elecrtron., 61(8), 4061-4072. http://doi.org/10.1109/TIE.2013.2279364
  25. Roffel, A., Narasimhan, S. and Haskett, T. (2013), "Performance of Pendulum Tuned Mass Dampers in Reducing the Responses of Flexible Structures", J. Struct. Eng., 139(12), 04013019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000797
  26. Shi, W.X., Wang, L.K. and Lu, Z. (2017), "Study on self-adjustable tuned mass damper with variable mass", Struct. Control Health Monitor., 25(3), e2114. https://doi.org/10.1002/stc.2114
  27. Sodano, H.A. and Inman, D.J. (2008), "Modeling of a new active eddy current vibration control system", J. Dyn. Syst., 130(2), 021009. https://doi.org/10.1115/1.2837436
  28. Sodano, H.A., Bae, J.S., Inman, D.J. and Belvin, W.K. (2005), "Concept and model of eddy current damper for vibration suppression of a beam", J. Sound Vib., 288(4), 1177-1196. https://doi.org/10.1016/j.jsv.2005.01.016
  29. Sun, C. and Jahangiri, V. (2018), "Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper", Mech. Syst. Signal Pr., 105, 338-360. https://doi.org/10.1016/j.ymssp.2017.12.011
  30. Wang, J.F. and Lin, C.C. (2015), "Extracting parameters of TMD and primary structure from the combined system responses", Smart Struct. Syst., Int. J., 16(4), 937-960. http://doi.org/10.12989/sss.2015.16.5.937
  31. Wang, Z.H., Chen, Z.Q. and Wang, J.H. (2012), "Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism", Earthq. Eng. Eng. Vib., 11(3), 391-401. https://doi.org/10.1007/s11803-012-0129-x
  32. Wang, L.L., Nagarajaiah, S., Shi, W.X. and Zhou, Y. (2020), "Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control", Struct. Design Tall Spec. Build., 29(15), e1793. https://doi.org/10.1002/tal.1793
  33. Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(1), 055011. http://doi.org/10.1088/0964-1726/20/1/015012
  34. Weber, F., Boston, C. and Maslanka, M. (2011), "An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper", Smart Mater. Struct., 20(1), 015012. http://doi.org/10.1088/0964-1726/20/1/015012
  35. Xu, H.B., Zhang, C.W., Li H. and Ou, J.P. (2014), "Real-time hybrid simulation approach for performance validation of structural active control systems: a linear motor actuator based active mass driver case study", Struct. Control Health Monitor., 21(4), 574-589. https://doi.org/10.1002/stc.1585
  36. Zhang, H.Y., Chen, Z.Q., Hua, X.G., Huang, Z.W. and Niu, H.W. (2020), "Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control", Mech. Syst. Signal Pr., 145(3), 106879. https://doi.org/10.1016/j.ymssp.2020.106879
  37. Zhong, T.F., Feng, X., Zhang, Y. and Zhou, J. (2022), "Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs", Smart Struct. Syst., Int. J., 29(3), 457-473. https://doi.org/10.12989/sss.2022.29.3.457
  38. Zhu, H.P., Li, Y.M., Shen, W.N. and Zhu, S.Y. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal Pr., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023
  39. Zuo, L., Chen, X.M. and Nayfeh, S. (2011), "Design and analysis of a new type of electromagnetic damper with increased energy density", J. Vib. Acoust., 133(4), 041006. https://doi.org/10.1115/1.4003407