Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China under Grant No. 51921006.
References
- Amezquita-Sanchez, J.P., Dominguez-Gonzalez, A., Sedaghati, R., Romero-Troncoso, R.J. and Osornio-Rios, R.A. (2014), "Vibration control on smart civil structures: A review", Mech. Adv. Mater. Struct., 21(1), 23-38. https://doi.org/10.1080/15376494.2012.677103
- Ao, W.K. and Reynolds, P. (2019), "Evaluation of eddy current damper for vibration control of a frame structure", J. Phys. Commun., 3(5), 055013. https://doi.org/10.1088/2399-6528/ab1deb
- COMSOL Inc. (2013), http://www.comsol.com.
- Contreras, M.T., Pasala, D.T. and Nagarajaiah, S. (2014), "Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change", Smart Struct. Syst., Int. J., 13(2), 219-233. http://doi.org/10.12989/sss.2014.13.2.219
- Diez-Jimenez, E., Rizzo, R., Gomez-Garcia, M.J. and Corral-Abad, E. (2019), "Review of passive electromagnetic devices for vibration damping and isolation", Shock Vib., Article ID 1250707. https://doi.org/10.1155/2019/1250707
- Domenico, D.D. and Ricciardi, G. (2018), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. D., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098
- Domizio, M., Ambrosini, D. and Curadelli, O. (2015), "Performance of TMDs on nonlinear structures subjected to near-fault earthquakes", Smart Mater. Struct., 16(4), 725-742. http://dx.doi.org/10.12989/sss.2015.16.4.725
- Ebrahimi, B., Khamesee, M.B. and Golnaraghi, F. (2009), "Eddy current damper feasibility in automobile suspension: modeling, simulation and testing", Smart Mater. Struct., 18(1), 015017. http://doi.org/10.1088/0964-1726/18/1/015017
- Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Annual Review Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015
- Gerges, R. and Vickery, B. (2005), "Optimum design of pendulum type tuned mass dampers", Struct. Design Tall Spec. Build., 14(4), 353-368. https://doi.org/10.1002/tal.273
- Gou, X.F, Yang, Y. and Zheng, X.J. (2004), "Analytic expression of magnetic field distribution of rectangular permanent magnets", Appl. Math. Mech., 25(3), 297-306. https://doi.org/10.1007/bf02437333
- Haus, H.A., Melcher, J.R., Zahn, M. and Silva, M.L. (1989), Electromagnetic Fields and Energy, Prentice Hall, NJ, USA.
- Korkmaz, S. (2011), "A review of active structural control: challenges for engineering informatics", Comput. Struct., 89, 2113-2132. https://doi.org/10.1016/j.compstruc.2011.07.010
- Lenggana, B.W., Ubaidillah, U., Imaduddin, F., Choi, S.B., Purwana, Y.M. and Harjana, H. (2021), "Review of magnetorheological damping systems on a seismic building", Appl. Sci., 11(19), 9339. https://doi.org/10.3390/app11199339
- Li, J.Y., Zhu, S. and Shen, J. (2019), "Enhance the damping density of eddy current and electromagnetic dampers", Smart Struct. Syst., Int. J., 24(1), 15-26. https://doi.org/10.12989/sss.2019.24.1.015
- Lu, X.L., Zhang, Q., Weng D.G., Zhou, Z.G., Wang, S.S., Mahin, S.A., Ding, S.W. and Qian, F. (2016), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monitor., 24(3), e1882. https://doi.org/10.1002/stc.1882
- Matta, E. (2019), "A novel bidirectional pendulum tuned mass damper using variable homogeneous friction to achieve amplitude-independent control", Earthq. Eng. Struct. D., 48(6), 653-677. https://doi.org/10.1002/eqe.3153
- Mehrtash, M. and Khamesee, M.B. (2013), "Modeling and analysis of eddy-current damping effect in horizontal motions for a high-precision magnetic navigation platform", IEEE Trans. Magnet., 49(8), 4801-4810. http://doi.org/10.1109/TMAG.2013.2245675
- Mohanta, R.K., Chelliah, T.R., Allamsetty, S., Akula, A. and Ghosh, R. (2017), "Sources of vibration and their treatment in hydro power stations-A review", Eng. Sci. Technol., 20(2), 637-648. https://doi.org/10.1016/j.jestch.2016.11.004
- Nagarajaiah, S. (2009), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform", Struct. Control Health Monitor., 16(7-8), 800-841. https://doi.org/10.1002/stc.349
- Niu, H.W., Chen, Z.Q., Hua, X.G. and Zhang, W.Z. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727
- Ou, J.P. (2003), Structural vibration control: active, semi-active and intelligent control, Science Press, Beijing, China. [in Chinese]
- Pasala, D.T. and Nagarajaiah, S. (2014), "Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time", Smart Struct. Syst., Int. J., 13(2), 219-233. http://dx.doi.org/10.12989/sss.2014.13.2.203
- Pluk, K.J.W., Beek, T.A., Jansen, J.W. and Lomonova, E.A. (2014), "Modeling and measurements on a finite rectangular conducting plate in an eddy current damper", IEEE Transact. Industr. Elecrtron., 61(8), 4061-4072. http://doi.org/10.1109/TIE.2013.2279364
- Roffel, A., Narasimhan, S. and Haskett, T. (2013), "Performance of Pendulum Tuned Mass Dampers in Reducing the Responses of Flexible Structures", J. Struct. Eng., 139(12), 04013019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000797
- Shi, W.X., Wang, L.K. and Lu, Z. (2017), "Study on self-adjustable tuned mass damper with variable mass", Struct. Control Health Monitor., 25(3), e2114. https://doi.org/10.1002/stc.2114
- Sodano, H.A. and Inman, D.J. (2008), "Modeling of a new active eddy current vibration control system", J. Dyn. Syst., 130(2), 021009. https://doi.org/10.1115/1.2837436
- Sodano, H.A., Bae, J.S., Inman, D.J. and Belvin, W.K. (2005), "Concept and model of eddy current damper for vibration suppression of a beam", J. Sound Vib., 288(4), 1177-1196. https://doi.org/10.1016/j.jsv.2005.01.016
- Sun, C. and Jahangiri, V. (2018), "Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper", Mech. Syst. Signal Pr., 105, 338-360. https://doi.org/10.1016/j.ymssp.2017.12.011
- Wang, J.F. and Lin, C.C. (2015), "Extracting parameters of TMD and primary structure from the combined system responses", Smart Struct. Syst., Int. J., 16(4), 937-960. http://doi.org/10.12989/sss.2015.16.5.937
- Wang, Z.H., Chen, Z.Q. and Wang, J.H. (2012), "Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism", Earthq. Eng. Eng. Vib., 11(3), 391-401. https://doi.org/10.1007/s11803-012-0129-x
- Wang, L.L., Nagarajaiah, S., Shi, W.X. and Zhou, Y. (2020), "Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control", Struct. Design Tall Spec. Build., 29(15), e1793. https://doi.org/10.1002/tal.1793
- Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(1), 055011. http://doi.org/10.1088/0964-1726/20/1/015012
- Weber, F., Boston, C. and Maslanka, M. (2011), "An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper", Smart Mater. Struct., 20(1), 015012. http://doi.org/10.1088/0964-1726/20/1/015012
- Xu, H.B., Zhang, C.W., Li H. and Ou, J.P. (2014), "Real-time hybrid simulation approach for performance validation of structural active control systems: a linear motor actuator based active mass driver case study", Struct. Control Health Monitor., 21(4), 574-589. https://doi.org/10.1002/stc.1585
- Zhang, H.Y., Chen, Z.Q., Hua, X.G., Huang, Z.W. and Niu, H.W. (2020), "Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control", Mech. Syst. Signal Pr., 145(3), 106879. https://doi.org/10.1016/j.ymssp.2020.106879
- Zhong, T.F., Feng, X., Zhang, Y. and Zhou, J. (2022), "Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs", Smart Struct. Syst., Int. J., 29(3), 457-473. https://doi.org/10.12989/sss.2022.29.3.457
- Zhu, H.P., Li, Y.M., Shen, W.N. and Zhu, S.Y. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal Pr., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023
- Zuo, L., Chen, X.M. and Nayfeh, S. (2011), "Design and analysis of a new type of electromagnetic damper with increased energy density", J. Vib. Acoust., 133(4), 041006. https://doi.org/10.1115/1.4003407