DOI QR코드

DOI QR Code

Shaping and assembly of structural systems of pocket foundations with prefabricated columns

  • Grzegorz Ludwik Golewski (Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology)
  • Received : 2022.01.27
  • Accepted : 2024.09.19
  • Published : 2024.11.10

Abstract

Pocket foundations are usually used under precast RC columns of steel or RC flyovers and industrial halls. Pocket foundations is a specific type of foundation in which, apart from standard calculations concerning the fulfilment of the limit states in the base of the footing, the problems related to the appropriate design of its walls in the pocket are also important. The aim of the article is, therefore, to draw attention to the specificity of pocket foundation design-which are part of the structural systems in the hall buildings-and to present the main problems that may arise during their construction at individual stages, including guidelines for checking the correctness of the conducted assembly works. The following article describes the main requirements for the construction of pocket foundations with particular attention to the type of surface present inside the pocket. The main problems related to the pocket foundations construction are also presented and the methodology of assembling the precast columns in the footings is described. In the manuscript, it was also discussed how to check and control the correctness of the skeleton installation works in hall buildings in order to prevent too large deviations in the assembled structure.

Keywords

Acknowledgement

This work was financially supported by Ministry of Science and Higher Education within the statutory research number FD-20/IL-4/017.

References

  1. Aboukifa, M.A., Reyad, K.H. and Saad, F.A. (2017), "Behavior and design of precast column/base pocket connections with smooth surface interface", Al-Azhar Univ. Civil Eng. Res. Mag. (CERM), 39(3), 191-202. 
  2. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181. 
  3. Baran, M., Susoy, M. and Tankut, T. (2011), "Strengthening of deficient RC frames with high strength concreto panels:an experimental study", Struct. Eng. Mech., 37(2), 177-196. https://doi.org/10.12989/sem.2011.37.2.177. 
  4. Berto, F., Ayatollahi, M. and Marsavina, L. (2017), "Mixed mode fracture", Theor. Appl. Fract. Mech., 91, 1. 
  5. Boudjellal, K., Bouabaz, M. and Belachia, M. (2016), "Mechanical characterization of a self-compacting polymer concrete called isobeton", Struct. Eng. Mech., 57(2), 357-367. https://doi.org/10.12989/sem.2016.57.2.357. 
  6. Chajec, A. (2021), "Granite powder vs. fly ash for the sustainable production of air-cured cementitious mortars", Mater., 14, 1208. https://doi.org/10.3390/ma14051208. 
  7. Chajec, A., Chowaniec, A., Krolicka, A., Sadowski, L., Zak, A. Piechowiak-Milenik, M. and Savija, B. (2021), "Engineering of green cementitious composites modified with siliceous fly ash: Understanding the importance of curing conditions", Constr. Build. Mater., 136, 125209. https://doi.org/10.1016/j.conbuildmat.2021.125209. 
  8. Chen, W., Xie, Y., Guo, X. and Li, D. (2022), "Experimental investigation of seismic performance of a hybrid beam-column connection in a precast concrete frame", Build., 12, 801. https://doi.org/10.3390/buildings12060801. 
  9. Cho, K.P. and Tamura, Y. (2001), "Field measurement of damping in industrial chimneys and towers", Struct. Eng. Mech., 12(4), 449-457. https://doi.org/10.12989/sem.2001.12.4.449. 
  10. Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Lecture Notes on Composite Materials: Current Topics and Achievements, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7. 
  11. Craciun, E.M. (2016), "Prestressed orthotropic material containing and elliptical hole", Adv. Struct. Mater., 60, 327-336. https://doi.org/10.1007/978-981-10-0959-4_18. 
  12. Dragas, J., Tosic, N., Ignatovic, S. and Marinkovic, S. (2016), "Mechanical and time-dependent properties of high-volume fly ash concrete for structural use", Mag. Concrete Res., 68, 632-645. https://doi.org/10.1680/jmacr.15.00384. 
  13. EN 1992-1-1 (2004), Eurocode 2: Design of Concrete Structures-Part 1-1, General Rules and Rules for Buildings. 
  14. Fakoor, M. and Ghoreishi, S.M.N. (2019), "Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates", Acta. Mechanica, 230(1), 225-241. https://doi.org/10.1007/s00707-018-2313-1. 
  15. Fakoor, M. and Manafi Farid, H. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta. Mechanica, 230(1), 281-301. https://doi.org/10.1007/s00707-018-2308-y. 
  16. Fakoor, M. and Shahsavar, S. (2021), "The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory", Int. J. Solid. Struct., 229, 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145. 
  17. Fakoor, M. and Shokrollahi, M.S. (2018), "A new micromechanical approach for investigation damage zone effects on mixed mode I/II fracture orthotropic materials", Acta Mechanica, 229(8), 3537-3556. https://doi.org/10.1007/s00707-018-2132-4. 
  18. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001. 
  19. Fakoor, M., Sabour, M.H. and Khansari, N.M. (2014), "A new approach for investigation of damage zone properties orthotropic materials", Eng. Solid Mech., 992(4), 283-292. 
  20. Fang, Y., Chen, J. and Tee, K.F. (2013), "Analysis of structural dynamic reliability based on the probability density evolution method", Struct. Eng. Mech., 45(2), 201-209. https://doi.org/10.12989/sem.2013.45.2.201. 
  21. Fang, Y., Yu, F., Chen, A., Wang, S. and Xu, G. (2021), "An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading", Struct. Eng. Mech., 77(2), 179-196. https://doi.org/10.12989/sem.2021.77.2.179. 
  22. Fu, J., Sarfarazi, V., Haeri, H. and Fatehi Marji, M. (2024b), "DEM analysis of the anisotropy effects on the failure mechanism of the layered concretes' specimens with internal notches", Comput. Concrete, 33(6), 659-670. https://doi.org/10.12989/cac.2024.33.6.659. 
  23. Fu, J., Sarfarazi, V., Haeri, H., Shahin, F.D., Jalali Chi, Z. and Fatehi Marji, M. (2024a), "Investigating the failure mechanism of X-shaped non-persistent joints under uniaxial loading: Experimental and numerical analysis", Theor. Appl. Fract. Mech., 131, 104462. https://doi.org/10.1016/j.tafmec.2024.104462. 
  24. Gil, D.M. and Golewski, G.L. (2018a), "Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in modeI", IOP Conf. Ser. Mater. Sci. Eng., 416, 012065. https://doi.org/10.1088/1757-899X/416/1/012065. 
  25. Gil, D.M. and Golewski, G.L. (2018b), "Potential of siliceous fly ash and silica fume as a substitute of binder in cementitious concretes", E3S Web Conf., 49, 00030. https://doi.org/10.1051/e3sconf/20184900030. 
  26. Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537. 
  27. Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement-Wapno-Beton=Cement Lime Concrete, 2, 106-114. 
  28. Golewski, G.L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001. 
  29. Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Manage, 23(5) 613-620. https://doi.org/10.3846/13923730.2016.1217923. 
  30. Golewski, G.L. (2017c), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Characterization of fly ash microstructure", Mater., 10, 1393. https://doi.org/10.3390/ma10121393. 
  31. Golewski, G.L. (2017d), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Characteriz., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008. 
  32. Golewski, G.L. (2018a), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser. Mater. Sci. Eng., 416, 012029. https://doi.org/10.1088/1757-899X/416/1/012029. 
  33. Golewski, G.L. (2018b), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144. 
  34. Golewski, G.L. (2018c), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090. 
  35. Golewski, G.L. (2018d), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065. 
  36. Golewski, G.L. (2018e), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concreto containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016. 
  37. Golewski, G.L. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317. 
  38. Golewski, G.L. (2019b), "A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads", Compos. Struct., 223, 110939. https://doi.org/10.1016/j.compstruct.2019.110939. 
  39. Golewski, G.L. (2019c), "Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems", Constr. Build. Mater., 213, 142-155. https://doi.org/10.1016/j.conbuildmat.2019.04.071. 
  40. Golewski, G.L. (2019d), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measure., 135, 96-105. https://doi.org/10.1016/j.measurement.2018.11.032. 
  41. Golewski, G.L. (2019e), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Proc. Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82. 
  42. Golewski, G.L. (2019f), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157. 
  43. Golewski, G.L. (2020a), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Mater., 13, 5241. https://doi.org/10.3390/ma13225241. 
  44. Golewski, G.L. (2020b), "Energy savings associated with the use of fly ash and nanoadditives in the cement composition", Energi., 13, 2184. https://doi.org/10.3390/en13092184. 
  45. Golewski, G.L. (2020c), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Mater. Today Proceed., 45, 4344-4348. https://doi.org/10.1016/j.matpr.2021.01.031. 
  46. Golewski, G.L. (2021a), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measure., 181, 109632. https://doi.org/10.1016/j.measurement.2021.109632. 
  47. Golewski, G.L. (2021b), "Green concrete based on quaternary binders with significant reduced of CO2 emissions", Energi., 14, 4558. https://doi.org/10.3390/en14154558. 
  48. Golewski, G.L. (2021c), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energi., 14, 668. https://doi.org/10.3390/en14030668. 
  49. Golewski, G.L. (2021d), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length-Using the crack tip tracking (CTT) method-In the fracture toughness examinations under Mode II, through digital image correlation", Constr. Build. Mater., 296, 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362. 
  50. Golewski, G.L. (2022a), "The specificity of shaping and execution of monolithic pocket foundations (PF) in hall buildings", Build., 12, 192. https://doi.org/10.3390/buildings12020192. 
  51. Golewski, G.L. (2022b), "The role of pozzolanic activity of siliceous fly ash in the formation of the structure of sustainable cementitious composites", Sustain. Chem., 3, 520-534. https://doi.org/10.3390/suschem3040032. 
  52. Golewski, G.L. (2023a), "Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials", Struct. Eng. Mech., 86(4), 431-441. https://doi.org/10.12989/sem.2023.86.4.431. 
  53. Golewski, G.L. (2023b), "The effect of the addition of coal fly ash (CFA) on the control of water movement within the structure of the concrete", Mater., 16, 5218. https://doi.org/10.3390/ma16155218. 
  54. Golewski, G.L. (2023c), "Examination of water absorption of low volume fly ash concrete (LVFAC) under water immersion condition", Mater. Res. Expr., 10(8), 085505. https://doi.org/10.1088/2053-1591/acedef. 
  55. Golewski, G.L. (2023d), "Assessing of water absorption on concrete composites containing fly ash up to 30% in regards to structures completely immersed in water", Case Stud. Constr. Mater., 19, e02337. https://doi.org/10.1016/j.cscm.2023.e02337. 
  56. Golewski, G.L. (2023e), "Effect of coarse aggregate graiding on mechanical parameters and fracture toughness of limestone concrete", Infrastr., 8, 117. https://doi.org/10.3390/infrastructures8080117. 
  57. Golewski, G.L. (2024a), "Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using noncontact measurement method", Adv. Nano Res., 16(3), 217-229. https://doi.org/10.12989/anr.2024.16.3.217. 
  58. Golewski, G.L. (2024b), "Enhancment fracture behavior of sustainable cementitious composites using synergy between fly ash (FA) and nanosilica (NS) in the assessment based on digital image processing procedure", Theor. Appl. Fract. Mech., 131, 104442. https://doi.org/10.1016/j.tafmec.2024.104442. 
  59. Golewski, G.L. (2024c), "Determination of fracture mechanics parameters of concretes based on cement matrix enhanced by fly ash and nano-silica", Mater., 17, 4230. https://doi.org/10.3390/ma17174230. 
  60. Golewski, G.L. (2024d), "Using digital image correlation to evaluate fracture toughness and crack propagation in the mode I testing of concretes involving fly ash and synthetic nano-SiO2", Mater. Res. Expr., 11, 095504. https://doi.org/10.1088/2053-1591/ad755e. 
  61. Golewski, G.L. (2024e), "Effect of coarse aggregate type on the fracture toughness of ordinary concrete", Infrastr., 9, 185. https://doi.org/10.3390/infrastructures9100185. 
  62. Golewski, G.L. (2024f), "Comparison of fracture behavior of set concretes based on natural and crushed aggregates", Mater. Res. Expr., 11, 105509. https://doi.org/10.1088/2053-1591/ad87b4. 
  63. Golewski, G.L. and Gil, D.M. (2021), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Mater., 14, 319. https://doi.org/10.3390/ma14020319. 
  64. Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Solid State Phenomena., 188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158. 
  65. Golewski, G.L. and Szostak, B (2021a), "Application of the C-S-H nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry", Mater., 14, 6514. https://doi.org/10.3390/ma14216514. 
  66. Golewski, G.L. and Szostak, B (2021b), "Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators", Constr. Build. Mater., 312, 125426. https://doi.org/10.1016/j.conbuildmat.2021.125426. 
  67. Haeri, H. (2015), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881. 
  68. Haeri, H. and Sarfarazi, V. (2016), "Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)", Comput. Concrete, 18(1), 39-51. https://doi.org/10.12989/cac.2016.18.1.039. 
  69. Haeri, H., Sarfarazi, V., Zhu, Z., Nohekhan Hokmabadi, N., Moshrefifar, M.R. and Hedayat, A. (2019), "Shear behawior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches", Struct. Eng. Mech., 69(2), 221-230. https://doi.org/10.12989/sem.2019.69.2.221. 
  70. Hajnayeb, A. and Khadem, S.E. (2015), "An analutical study on the nonlinera vibration of a doublewalled carbon nanotube", Struct. Eng. Mech., 54(5), 987-998. https://doi.org/10.12989/sem.2015.54.5.987. 
  71. Hebhoub, H., Belachia, M., Berdoudi, S. and Kherraf, L. (2018), "Incorporation of marble waste as sand in formulation of self-compacting concrete", Struct. Eng. Mech., 67(1), 87-91. https://doi.org/10.12989/sem.2018.67.1.087. 
  72. Hemamahti, L. and Jaya, K.P. (2021), "Behaviour of precast column foundation connection under reverse cyclic loading", Adv. Civil Eng., 2021, 6677007. https://doi.org/10.1155/2021/6677007. 
  73. Ikponmwosa, E.E.., Ehikhuenmen, S.O. and Irene, K.K. (2019), "Comparative study and empirical modelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete", Acta Polytech., 59(6), 560-572. 
  74. Iswahyudi, B.E., Azis, S. and Santosa, AA. (2017), "Analysis of construction cost efficiency between precast method and conventional method in building project", Int. J. Technol. Sci., 1(1), 28-35. 
  75. Jalal, M. (2014), "Corrosion resistant self-compacting concrete using micro and nano silica admixtures", Struct. Eng. Mech., 51(3), 403-412. https://doi.org/10.12989/sem.2014.51.3.403. 
  76. Ji, G., Peng, X., Wang, S., Hu, C., Ran, P., Sun, K. and Zeng, L. (2021), "Influence of magnesium slag as a mineral admixture on the performance of concrete", Constr. Build. Mater., 295, 123619. https://doi.org/10.1016/j.conbuildmat.2021.123619. 
  77. Ju, M., Park, K., Lee, K., Yong Ahn, K. and Sim, J. (2019), "Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate", Struct. Eng. Mech., 69(4), 399-405. https://doi.org/10.12989/sem.2019.69.4.399. 
  78. Kalyana Rama, J.S., Chauhan, D.R., Sivakumar, M.V.N., Vasan, A. and Ramachandra Murthy, A. (2017), "Fracture properties of concrete using damaged plasticity model-A parametric study", Struct. Eng. Mech., 64(1), 59-69. https://doi.org/10.12989/sem.2017.64.1.059. 
  79. Kaur, I., Lata, P. and Singh, K. (2020), "Effect of memory dependent derivative isotropic thermoelastic cantilever nano-beam with two temperature", Appl. Math. Model., 88, 83-105. https://doi.org/10.1016/j.apm.2020.06.045. 
  80. Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings-sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563. 
  81. Khaji, Z. and Fakoor, M. (2021), "Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials", Theor. Appl. Fract. Mech., 113, 102962. https://doi.org/10.1016/j.tafmec.2021.102962. 
  82. Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003. 
  83. Kobiak, J. and Stachurski, W. (1989), Konstrukcje Zelbetowe. Tom II (Concrete Structures. Vol. II], Arkady, Warsaw, Poland.
  84. Krentowski, J.R. (2015), "Disaster of an industrial hall caused by an explasion of wood dust and fire", Eng. Fail. Anal., 56, 403-411. https://doi.org/10.1016/j.engfailanal.2014.12.015. 
  85. Krentowski, J.R. (2022), "Assessment of destructive impact of different factors on concrete structures durability", Mater., 15, 225. https://doi.org/10.3390/ma15010225. 
  86. Kumar, A., Kumar, R., Das, V., Jhatial, A.A. and Ali, T.H. (2021), "Assessing the structural efficiency and durability of burnt clay bricks incorporating fly ash and silica fume as additives", Constr. Build. Mater., 310, 125233. https://doi.org/10.1016/j.conbuildmat.2021.125233. 
  87. Lata, P. and Kaur, I. (2019a), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245. 
  88. Lata, P. and Kaur, I. (2019b), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without Energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779. 
  89. Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343. 
  90. Li, L.., Zheng, Q., Wang, X., Han, B. and Ou, J. (2022), "Modifying fatigue performance of reactive powder concrete through adding pozzolanic nanofillers", Int. J. Fatigue, 156, 106681. https://doi.org/10.1016/j.ijfatigue.2021.106681. 
  91. Liang, J.F., Zhang, L.F., Yang, Y.H. and Wei, L. (2021), "Flexural behavior of partially prefabricated partially encased composite beams", Steel. Compos. Struct., 38(6), 705-716. https://doi.org/10.12989/scs.2021.38.6.705. 
  92. Linul, E., Marsavina, L., Linul, P.A. and Kovacik, J. (2019), "Cryogenic and high temperature compressive properties of metal foam matrix composites", Compos. Struct., 209, 490-498. https://doi.org/10.1016/j.compstruct.2018.11.006. 
  93. Linul, E., Movahedi, N. and Marsavina, L. (2017), "The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes", Compos. Struct., 180, 709-722. https://doi.org/10.1016/j.compstruct.2017.08.034. 
  94. Lu, X. and Zhou, Y. (2007), "An applied model for steel reinforced concreto columns", Struct. Eng. Mech., 27(6), 697-711. https://doi.org/10.12989/sem.2007.27.6.697. 
  95. Lyratzakis, A., Tsompanakis, Y. and Psarropoulos, P.N. (2022), "Efficient mitigation of high-speed train vibrations on adjacent reinforced concrete buildings", Constr. Build. Mater., 314, 125653. https://doi.org/10.1016/j.conbuildmat.2021.125653. 
  96. Marin, M., Craciun, E.M. and Pop, N. (2020), "Some results in green-lindsay thermoelasticity of bodies with dipolar structure", Math., 8(4), 497. https://doi.org/10.3390/math8040497. 
  97. Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech., 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008. 
  98. Marsavina, L., Constantinescu, D.M., Linul, E., Voiconi, T. and Apostol, D.A. (2015), "Shear and mode II fracture of PUR foams", Eng. Fail. Anal., 58, 465-476. https://doi.org/10.1016/j.engfailanal.2015.05.021. 
  99. Mehdizadeh, M., Maghshenas, A. and Khosnari, M.M. (2021), "On the effect of internal friction on torsional and axial cyclic loading", Int. J. Fatigue, 145, 106113. https://doi.org/10.1016/j.ijfatigue.2020.106113. 
  100. Meyer, Ch. and Peng, X. (1997), "A comprehensive description for damage of concrete subjected to complex loading", Struct. Eng. Mech., 5(6), 679-689. https://doi.org/10.12989/sem.1997.5.6.679. 
  101. Miraldo, S., Lopes, S., Pacheco-Torgal, F. and Lopes, A. (2021), "Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes", Constr. Build. Mater., 298, 123729. https://doi.org/10.1016/j.conbuildmat.2021.123729. 
  102. Monteiro Azevedo, N. and Lemos, J.V. (2006), "Aggregate shape influence on the fracture behaviour of concrete", Struct. Eng. Mech., 24(4), 411-427. https://doi.org/10.12989/sem.2006.24.4.411. 
  103. Mousavi, S.R., Afshoon, I., Bayatpour, M.A., Davarpanah, A. and Mahmoud Miri, T.Q. (2021), "Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen", Constr. Build. Mater., 282, 122711. https://doi.org/10.1016/j.conbuildmat.2021.122711. 
  104. Park, S., Beak, J., Kim, K. and Park, Y.J. (2021), "Study on reduction effect of vibration propagation due to internal explosion using composite materials", Int. J. Concrete Struct. Mater., 15, 30. https://doi.org/10.1186/s40069-021-00467-8. 
  105. Polat, G. (2010), "Prefabricated concrete systems in developing vs. industrialized countries", Civil Eng. Manage, 16, 85-94. 
  106. Priya, A.K., Nagan, S., Rajeswari, M., Nithya, M., Priyanka, P.M. and Vanitha, R. (2016), "Analytical investigation on the seismic behaviour of precast pocket foundation connection", Int. J. Adv. Eng. Tech., 7(1), 214-218. 
  107. Pul, S., Senturk, M., Ilki, A. and Hajirasouliha, I. (2021), "Experimental and numerical investigation of a proposed monolithic-like precast concrete column-foundation connection", Eng. Struct., 246, 113090. https://doi.org/10.1016/j.engstruct.2021.113090. 
  108. Qaidi, S.M.A.., Dinkha, Y.Z., Haido, J.H., Ali, M.H. and Tayeh, B.A. (2021), "Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review", J. Clean. Prod., 224, 129521. https://doi.org/10.1016/j.jclepro.2021.129251. 
  109. Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel. Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/sem.2015.19.6.1369. 
  110. Raheel, M., Rahman, F. and Ali, Q. (2020), "A stoichiometric approach to find optimum amount of fly ash needed in cement concrete", SN Appl. Sci., 2, 1100. https://doi.org/10.1007/s42452-020-2913-y. 
  111. Rahmani, E., Sharbatdar, M.K. and Beygi, M.H.A. (2021), "Influence of cement contents on the fracture parameters of Roller compacted concrete pavement (RCCP)", Constr. Build. Mater., 289, 123159. https://doi.org/10.1016/j.conbuildmat.2021.123159. 
  112. Ramachandra Murthy, A., Ganesh, P., Sundar Kumar, S. and Iyer, N.R. (2015), "Fracture energy and tension softening relation for nanomodified concrete", Struct. Eng. Mech., 54(6), 1201-1216. https://doi.org/10.12989/sem.2015.54.6.1201. 
  113. Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370. 
  114. Shah, A., Jan, I.U., Khan, R.U. and Qazi, E.U. (2013), "Experimental investigation of the used of recycled aggregates in producing concrete", Struct. Eng. Mech., 47(4), 545-557. https://doi.org/10.12989/sem.2013.47.4.545. 
  115. Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta. Mechanica, 231(12), 5105-5124. https://doi.org/10.1007/s00707-020-02810-8. 
  116. Shao, C., Ju, J.W.W., Han, G. and Qian, Y. (2017), "Seismic applicability of a long-span railway concreto upper-deck arch bridge with CFST rigid skeleton rib", Struct. Eng. Mech., 61(5), 645-655. https://doi.org/10.12989/sem.2017.61.5.645. 
  117. Starosolski, W. (2007), Konstrukcje Zelbetowe wg PN-B03264:2002 i Eurokodu 2, (Concrete Structures according to PN-B-03264:2002 and Eurocode 2), PWN, Warsaw, Poland. 
  118. Szczesniak, A., Zychowicz, J. and Stolarski, A. (2020), "Influence of fly ash additive on the properties of concrete with slag cement", Mater., 13, 3265. https://doi.org/10.3390/ma13153265. 
  119. Szostak, B. and Golewski, G.L. (2018), "Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash", IOP Conf. Ser. Mater. Sci. Eng., 416, 012105. https://doi.org/10.1088/1757-899X/416/1/012105. 
  120. Szostak, B. and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous of fly ash by using nanometric C-S-H seeds", Energi., 13, 6734. https://doi.org/10.3390/en13246734. 
  121. Szostak, B. and Golewski, G.L. (2021), "Rheology of cement pastes with siliceous of fly ash and the C-S-H nano-admixture", Mater., 14, 3640. https://doi.org/10.3390/ma14133640. 
  122. Wan, C., Zheng, Y., Zhang, P. and Ma, M. (2024), "Effect of hybrid basalt-brucite fiber on the fracture behavior of low-heat cement concrete", Constr. Build. Mater., 442, 137667. https://doi.org/10.1016/j.conbuildmat.2024.137667. 
  123. Wang, L., Zhang, P., Golewski, G.L. and Guan, J. (2023), "Editorial: Fabrication and properties of concrete containing industrial waste", Front. Mater., 10, 1169715. https://doi.org/10.3389/fmats.2023.1169715. 
  124. Wu, J., Yang, J., Zhang, R., Jin, L. and Du, X. (2022), "Fatigue life estimating chloride attacked RC beams using combined with mesoscale simulation of chloride ingress", Int. J. Fatigue, 158, 106751. https://doi.org/10.1016/j.ijfatigue.2022.106751. 
  125. Xi, X., Zheng, Y., Du, C., Zhang, P. and Sun, M. (2024a), "Study on the hydration characteristics, mechanical properties, and microstructure of thermally activated low-carbon recycled cement", Constr. Build. Mater., 447, 138042. https://doi.org/10.1016/j.conbuildmat.2024.138042. 
  126. Xi, X., Zheng, Y., Zhuo, J., Zhang, P., Golewski, G.L. and Du, C. (2024b), "Influence of water glass modulus and alcali content on the properties of alcali-activated thermally activated recycled cement", Constr. Build. Mater., 452, 138867. http://doi.org/10.2139/ssrn.4948615. 
  127. Xi, X., Zheng, Y., Zhuo, J., Zhang, P., Golewski, G.L. and Du, C. (2024c), "Mechanical properties and hydration mechanism of nano-silica modified alcali-activated thermally activated recycled cement", J. Build. Eng., 98, 110998. https://doi.org/10.1016/j.jobe.2024.110998. 
  128. Yang, J.M. and Kim, J.K. (2019), "Development and application of a hybrid prestressed segmental concrete grider utilizing low carbon materials", Struct. Eng. Mech., 69(4), 371-381. https://doi.org/10.12989/sem.2019.69.4.371. 
  129. Zhang, P, Han, S., Golewski, G.L. and Wang, X. (2020), "Nanoparticle-reinforced building materials with applications in civil engineering", Adv. Mech. Eng., 12, 1-4. https://doi.org/10.1177/1687814020965438. 
  130. Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261. 
  131. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021a), "Effect of nano silica particles on impact resistance and durability concreto containing coal fly ash", Nanomater., 11(5), 1296. https://doi.org/10.3390/nano11051296. 
  132. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021b), "Statistical analysis of three-point-bending fracture failure of mortar", Constr. Build. Mater., 300, 123883. https://doi.org/10.1016/j.conbuildmat.2021.123883.