References
- Alijani, F., Bakhtiari-Nejad, F. and Amabili, M. (2011), "Nonlinear vibrations of FGM rectangular plates in thermal environments", Nonlin. Dyn., 66, 251-270. https://doi.org/10.1007/s11071-011-0049-8.
- Almasi, D., Sadeghi, M., Lau, W.J., Roozbahani, F. and Iqbal, N. (2016), "Functionally graded polymeric materials: A brief review of current fabrication methods and introduction of a novel fabrication method", Mater. Sci. Eng.: C, 64, 102-107. https://doi.org/10.1016/j.msec.2016.03.053.
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
- Bahraminasab, M., Ghaffari, S. and Eslami-Shahed, H. (2017), "Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications", J. Mech. Behav. Biomed. Mater., 72, 82-89. https://doi.org/10.1016/j.jmbbm.2017.04.024.
- Bardell, N.S., Dunsdon, J.M. and Langley, R.S. (1998), "Free vibration of thin, isotropic, open, conical panels", J. Sound Vib., 217(2), 297-320. https://doi.org/10.1006/jsvi.1998.1761.
- Bert, C.W. and Francis, P.H. (1974), "Composite material mechanics: structural mechanics", AIAA J., 12(9), 1173-1186. https://doi.org/10.2514/3.49450.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 1-6. https://doi.org/10.1115/1.2777164.
- Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Chowdary, S. and Kumar Gara, D. (2021), "State of the art in functionally graded materials", Compos. Struct., 262, 113596. https://doi.org/10.1016/j.compstruct.2021.113596.
- Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
- Chen, D., Kitipornchai, S. and Yang, J. (2018), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Des., 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.
- Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalised cross-validation", Numerische Mathematik, 31(4), 377-403. https://doi.org/10.1007/BF01404567.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
- Deng, L. and Cai, C.S. (2007), "Applications of fiber optic sensors in civil engineering", Struct. Eng. Mech., 25(5), 577-596. https://doi.org/10.12989/sem.2007.25.5.577.
- Dey, S., Mukhopadhyay, T., Spickenheuer, A., Gohs, U. and Adhikari, S. (2016), "Uncertainty quantification in natural frequency of composite plates-An Artificial neural network-based approach", Adv. Compos. Lett., 25(2), 096369351602500203. https://doi.org/10.1177/096369351602500203.
- Elleuch, S., Jrad, H., Wali, M. and Dammak, F. (2022), "Vibration characteristics of porous functionally graded cylindrical shells", Int. Conf. Acoust. Vib., 4, 78-84. https://doi.org/10.1007/978-3-031-34190-8_10.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, T. (2022), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
- Garnet, H. and Kempner, J. (1964), "Axisymmetric free vibrations of conical shells", J. Appl. Mech., 31(3) 458-466, https://doi.org/10.1115/1.3629663.
- Goldberg, J.E., Bogdanoff, J.L. and Marcus, L. (1960), "On the calculation of the axisymmetric modes and frequencies of conical shells", J. Acoust. Soc. Am., 32(6), 738-742. https://doi.org/10.1121/1.1908201.
- Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61. https://doi.org/10.12989/csm.2021.10.1.061.
- Hadji, L., Bernard, F., Safa, A. and Tounsi, A. (2021), "Bending and free vibration analysis for FGM plates containing various distribution shapes of porosity", Adv. Mater. Res., 10(2), 115-135. https://doi.org/10.12989/amr.2021.10.2.115.
- Hashemi, S.M. and Adique, E.J. (2010), "A quasi-exact dynamic finite element for free vibration analysis of sandwich beams", Appl. Compos. Mater., 17, 259-269. https://doi.org/10.1007/s10443-009-9109-3.
- Hashemi, S.M. and Roach, A. (2011), "Dynamic finite element analysis of extensional-torsional coupled vibration in nonuniform composite beams", Appl. Compos. Mater., 18, 521-538. https://doi.org/10.1007/S10443-011-9230-Y.
- Hodges, D.H., Atilgan, A.R., Fulton, M.V. and Rehfield, L.W. (1991), "Free-Vibration analysis of composite beams", J. Am. Helicopter Soc., 36(3), 36-47. https://doi.org/10.4050/JAHS.36.36.
- Hoksbergen, J.S., Ramulu, M., Reinhall, P. and Briggs, T.M. (2009), "A comparison of the vibration characteristics of carbon fiber reinforced plastic plates with those of magnesium plates", Applied Composite Materials, 16, 263-283. https://doi.org/10.1007/s10443-009-9093-7.
- HS, N.K., Kattimani, S. and Nguyen-Thoi, T. (2021), "Influence of porosity distribution on nonlinear free vibration and transient responses of porous functionally graded skew plates", Def. Technol., 17(6), 1918-1935. https://doi.org/10.1016/j.dt.2021.02.003.
- Irie, T. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447. https://doi.org/10.1016/0022-460X(84)90391-2.
- Jankowski, P., Zur, K.K. and Farajpour, A. (2022), "Analytical and meshless DQM approaches free vibration analysis of symmetric FGM porous nanobeams with piezoelectric effect", Eng. Anal. Bound. Elem., 136, 266-289. https://doi.org/10.1016/j.enganabound.2022.01.007.
- Jung, H.J., Spencer Jr, B.F., Ni, Y.Q. and Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493.
- Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Influence of homogenisation schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
- Karsh, P.K. and Dey, S. (2021), "Stochastic natural frequencies of functionally graded plates based on power law index", Computational Mathematics, Nanoelectronics, and Astrophysics: CMNA 2018, Indore, India, November.
- Karsh, P.K., Kumar, R.R. and Dey, S. (2020), "Radial basis function-based stochastic natural frequencies analysis of functionally graded plates", Int. J. Comput. Meth., 17(09), 1950061. https://doi.org/10.1142/S0219876219500610.
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018), "Stochastic dynamic analysis of twisted functionally graded plates", Compos. Part B: Eng., 147, 259-278. https://doi.org/10.1016/j.compositesb.2018.03.043.
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2019), "A stochastic investigation of the effect of temperature on natural frequencies of functionally graded plates", Advances in Structural Engineering and Rehabilitation: Select Proceedings of TRACE 2018, 41-53. https://doi.org/10.1007/978-981-13-7615-3_3.
- Kumar, K.A. and Reddy, D.M. (2016), "Application of frequency response curvature method for damage detection in beam and platelike structures", IOP Conf. Ser.: Mater. Sci. Eng., 149(1), 012160. https://doi.org/10.1088/1757-899X/149/1/012160.
- Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curv. Layer. Struct., 6(1), 192-211. https://doi.org/10.1515/cls2019-0017.
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
- Meirovitch, L. (1975), Elements of Vibration Analysis, McGraw-Hill, Inc., New York.
- Meirovitch, L. (1991), Dynamics and Control of Structures, John Wiley and Sons.
- Merdaci, S., Adda, H.M., Hakima, B., Dimitri, R. and Tornabene, F. (2021), "Higher-order free vibration analysis of porous functionally graded plates", J. Compos. Sci., 5(11), 305. https://doi.org/10.3390/jcs5110305.
- Mukhopadhyay, T. (2018), "A multivariate adaptive regression splines-based damage identification methodology for web core composite bridges including the effect of noise", J. Sandw. Struct. Mater., 20(7), 885-903. https://doi.org/10.1177/10996362166825
- Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001.
- Nguyen, T.K., Nguyen, V.H. and Chau-Dinh, T. (2019), "Cell-and node-based smoothing MITC3-finite elements for static and free vibration analysis of laminated composite and functionally graded plates", Int. J. Computat. Meth., 16(08), 1850123. https://doi.org/10.1142/S0219876218501232.
- Nguyen-Thoi, T., Rabczuk, T., Ho-Huu, V., Le-Anh, L., Dang-Trung, H. and Vo-Duy, T. (2017), "An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates", Int. J. Computat. Meth., 14(02), 1750011. https://doi.org/10.1142/S0219876217500116.
- Oduro, S.D., Metia, S., Duc, H., Hong, G. and Ha, Q.P. (2015), "Multivariate adaptive regression splines models for vehicular emission prediction", Visual. Eng., 3, 1-12. https://doi.org/10.1186/s40327-015-0024-4.
- Pasha, A. and Rajaprakash, B.M. (2022), "Functionally graded materials (FGM) fabrication and its potential challenges and applications", Mater. Today: Proc., 52, 413-418. https://doi.org/10.1016/j.matpr.2021.09.077.
- Peng, L.X., Chen, S.Y., Chen, W. and He, X.C. (2023), "A moving kriging interpolation meshless for bending and free vibration analysis of the stiffened FGM plates in thermal environment", Int. J. Comput. Meth., 20(10), 2350015. https://doi.org/10.1142/S0219876223500159.
- Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., ... & Schulte, K.J.M.S. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
- Pradhan, P., Sutar, M.K. and Pattnaik, S. (2019), "A state of the art in functionally graded materials and their analysis", Mater. Today: Proc., 18, 3931-3936. https://doi.org/10.1016/j.matpr.2019.07.333.
- Ram, S.C., Chattopadhyay, K. and Chakrabarty, I. (2017), "High temperature tensile properties of centrifugally cast in-situ Al-Mg2Si functionally graded composites for automotive cylinder block liners", J. Alloy. Compound., 724, 84-97. https://doi.org/10.1016/j.jallcom.2017.06.306.
- Raturi, H.P., Kushari, S., Karsh, P.K. and Dey, S. (2023), "Evaluating stochastic fundamental natural frequencies of porous functionally graded material plate with even porosity effect: A multi-machine learning approach", J. Vib. Eng. Technol., 12(2), 1931-1942. https://doi.org/10.1007/s42417-023-00954-0.
- Sarathchandra, D.T., Subbu, S.K. and Venkaiah, N. (2018), "Functionally graded materials and processing techniques: An art of review", Mater. Today: Proc., 5(10), 21328-21334. https://doi.org/10.1016/j.matpr.2018.06.536.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
- Singh, H., Hazarika, B.C. and Dey, S. (2017), "Low velocity impact responses of functionally graded plates", Procedia Eng., 173, 264-270. https://doi.org/10.1016/j.proeng.2016.12.010.
- Siu, C.C. and Bert, C.W. (1970), "Free vibrational analysis of sandwich conical shells with free edges", J. Acoust. Soc. Am., 47(3B), 943-945. https://doi.org/10.1016/j.compstruct.2019.01.082.
- Teng, M.W. and Wang, Y.Q. (2021), "Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets", Thin Wall. Struct., 164, 107799. https://doi.org/10.1016/j.tws.2021.107799.
- Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010.
- Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Volume 3, Ferrous Alloys, Macmillan, New York.
- Uma, S.R. and Jain, S.K. (2006), "Seismic design of beam-column joints in RC moment resisting frames-Review of codes", Struct. Eng. Mech., 23(5), 579. https://doi.org/10.12989/sem.2006.23.5.579.
- Vaishali Kushari, S., Kumar, R.R., Karsh, P.K. and Dey, S. (2023), "Sensitivity analysis of random frequency responses of hybrid multi-functionally graded sandwich shells", J. Vib. Eng. Technol., 11(3), 845-872. https://doi.org/10.1007/s42417-022-00612-x.
- Wang, Y., Ye, C. and Zu, J. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50, 1331-1342. https://doi.org/10.1007/s11012-014-0094-8.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
- Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244,112298. https://doi.org/10.1016/j.compstruct.2020.112298.
- Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B: Eng., 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044.
- Zhao, T.Y., Liu, Z.F., Pan, H.G., Zhang, H.Y. and Yuan, H.Q. (2021), "Vibration characteristics of functionally graded porous nanocomposite blade-disk-shaft rotor system reinforced with graphene nanoplatelets", Appl. Compos. Mater., 28, 717-731. https://doi.org/10.1007/s10443-021-09880-4.
- Zhao, Y. and Peng, Z. (2020), "Frequency response function-based finite element model updating using extreme learning machine model", Shock Vib., 2020(1), 8526933. https://doi.org/10.1155/2020/8526933.
- Zhou, C., Deng, C., Chen, X., Zhao, X., Chen, Y., Fan, Y. and Zhang, X. (2015), "Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering", J. Mech. Behav. Biomed. Mater., 48, 1-11. https://doi.org/10.1016/j.jmbbm.2015.04.002.