DOI QR코드

DOI QR Code

Stochastic dynamic analysis of porous functionally graded plate: A multivariate adaptive regression splines approach

  • Himanshu P. Raturi (Department of Mechanical Engineering, National Institute of Technology Silchar) ;
  • Pradeep K. Karsh (Department of Mechanical Engineering, Parul Institute of Engineering and Technology, Parul University) ;
  • Ravi R. Kumar (Department of Mechanical Engineering, National Institute of Technology) ;
  • Sudip Dey (Department of Mechanical Engineering, National Institute of Technology Silchar)
  • Received : 2024.07.05
  • Accepted : 2024.10.10
  • Published : 2024.11.10

Abstract

This paper introduces a methodology that combines Multivariate Adaptive Regression Splines (MARS) modelling and Monte Carlo Simulation to investigate the natural frequencies of porous functionally graded material (FGM) plates along with the frequency response function (FRF) analysis. The MARS model captures the nonlinear relationship between natural frequencies and different parameters, while the FRF approach provides insights into the plate's frequency response. The proposed methodology is accurate and helpful in studying the impact of porosity, power law index, temperature, and plate thickness on the first three natural frequencies, considering the stochastic variations in material properties caused by manufacturing errors. The porous FGM plate is subjected to a traditional finite element (FE) analysis with random material properties. The power law distribution is used to ascertain the material characteristics of porous functionally graded plates. The effects of critical material characteristics, such as elastic Young's modulus, shear modulus, Poisson's ratio, and mass density, on the natural frequencies of porous FGM are examined. The results show that MARS-based finite element analysis has better computational efficiency than Monte Carlo simulations-based finite element analysis.

Keywords

References

  1. Alijani, F., Bakhtiari-Nejad, F. and Amabili, M. (2011), "Nonlinear vibrations of FGM rectangular plates in thermal environments", Nonlin. Dyn., 66, 251-270. https://doi.org/10.1007/s11071-011-0049-8.
  2. Almasi, D., Sadeghi, M., Lau, W.J., Roozbahani, F. and Iqbal, N. (2016), "Functionally graded polymeric materials: A brief review of current fabrication methods and introduction of a novel fabrication method", Mater. Sci. Eng.: C, 64, 102-107. https://doi.org/10.1016/j.msec.2016.03.053.
  3. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
  4. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  5. Bahraminasab, M., Ghaffari, S. and Eslami-Shahed, H. (2017), "Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications", J. Mech. Behav. Biomed. Mater., 72, 82-89. https://doi.org/10.1016/j.jmbbm.2017.04.024.
  6. Bardell, N.S., Dunsdon, J.M. and Langley, R.S. (1998), "Free vibration of thin, isotropic, open, conical panels", J. Sound Vib., 217(2), 297-320. https://doi.org/10.1006/jsvi.1998.1761.
  7. Bert, C.W. and Francis, P.H. (1974), "Composite material mechanics: structural mechanics", AIAA J., 12(9), 1173-1186. https://doi.org/10.2514/3.49450.
  8. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 1-6. https://doi.org/10.1115/1.2777164.
  9. Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Chowdary, S. and Kumar Gara, D. (2021), "State of the art in functionally graded materials", Compos. Struct., 262, 113596. https://doi.org/10.1016/j.compstruct.2021.113596.
  10. Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
  11. Chen, D., Kitipornchai, S. and Yang, J. (2018), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Des., 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.
  12. Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalised cross-validation", Numerische Mathematik, 31(4), 377-403. https://doi.org/10.1007/BF01404567.
  13. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  14. Deng, L. and Cai, C.S. (2007), "Applications of fiber optic sensors in civil engineering", Struct. Eng. Mech., 25(5), 577-596. https://doi.org/10.12989/sem.2007.25.5.577.
  15. Dey, S., Mukhopadhyay, T., Spickenheuer, A., Gohs, U. and Adhikari, S. (2016), "Uncertainty quantification in natural frequency of composite plates-An Artificial neural network-based approach", Adv. Compos. Lett., 25(2), 096369351602500203. https://doi.org/10.1177/096369351602500203.
  16. Elleuch, S., Jrad, H., Wali, M. and Dammak, F. (2022), "Vibration characteristics of porous functionally graded cylindrical shells", Int. Conf. Acoust. Vib., 4, 78-84. https://doi.org/10.1007/978-3-031-34190-8_10.
  17. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  18. Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, T. (2022), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
  19. Garnet, H. and Kempner, J. (1964), "Axisymmetric free vibrations of conical shells", J. Appl. Mech., 31(3) 458-466, https://doi.org/10.1115/1.3629663.
  20. Goldberg, J.E., Bogdanoff, J.L. and Marcus, L. (1960), "On the calculation of the axisymmetric modes and frequencies of conical shells", J. Acoust. Soc. Am., 32(6), 738-742. https://doi.org/10.1121/1.1908201.
  21. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61. https://doi.org/10.12989/csm.2021.10.1.061.
  22. Hadji, L., Bernard, F., Safa, A. and Tounsi, A. (2021), "Bending and free vibration analysis for FGM plates containing various distribution shapes of porosity", Adv. Mater. Res., 10(2), 115-135. https://doi.org/10.12989/amr.2021.10.2.115.
  23. Hashemi, S.M. and Adique, E.J. (2010), "A quasi-exact dynamic finite element for free vibration analysis of sandwich beams", Appl. Compos. Mater., 17, 259-269. https://doi.org/10.1007/s10443-009-9109-3.
  24. Hashemi, S.M. and Roach, A. (2011), "Dynamic finite element analysis of extensional-torsional coupled vibration in nonuniform composite beams", Appl. Compos. Mater., 18, 521-538. https://doi.org/10.1007/S10443-011-9230-Y.
  25. Hodges, D.H., Atilgan, A.R., Fulton, M.V. and Rehfield, L.W. (1991), "Free-Vibration analysis of composite beams", J. Am. Helicopter Soc., 36(3), 36-47. https://doi.org/10.4050/JAHS.36.36.
  26. Hoksbergen, J.S., Ramulu, M., Reinhall, P. and Briggs, T.M. (2009), "A comparison of the vibration characteristics of carbon fiber reinforced plastic plates with those of magnesium plates", Applied Composite Materials, 16, 263-283. https://doi.org/10.1007/s10443-009-9093-7.
  27. HS, N.K., Kattimani, S. and Nguyen-Thoi, T. (2021), "Influence of porosity distribution on nonlinear free vibration and transient responses of porous functionally graded skew plates", Def. Technol., 17(6), 1918-1935. https://doi.org/10.1016/j.dt.2021.02.003.
  28. Irie, T. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447. https://doi.org/10.1016/0022-460X(84)90391-2.
  29. Jankowski, P., Zur, K.K. and Farajpour, A. (2022), "Analytical and meshless DQM approaches free vibration analysis of symmetric FGM porous nanobeams with piezoelectric effect", Eng. Anal. Bound. Elem., 136, 266-289. https://doi.org/10.1016/j.enganabound.2022.01.007.
  30. Jung, H.J., Spencer Jr, B.F., Ni, Y.Q. and Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493.
  31. Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
  32. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Influence of homogenisation schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
  33. Karsh, P.K. and Dey, S. (2021), "Stochastic natural frequencies of functionally graded plates based on power law index", Computational Mathematics, Nanoelectronics, and Astrophysics: CMNA 2018, Indore, India, November.
  34. Karsh, P.K., Kumar, R.R. and Dey, S. (2020), "Radial basis function-based stochastic natural frequencies analysis of functionally graded plates", Int. J. Comput. Meth., 17(09), 1950061. https://doi.org/10.1142/S0219876219500610.
  35. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018), "Stochastic dynamic analysis of twisted functionally graded plates", Compos. Part B: Eng., 147, 259-278. https://doi.org/10.1016/j.compositesb.2018.03.043.
  36. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2019), "A stochastic investigation of the effect of temperature on natural frequencies of functionally graded plates", Advances in Structural Engineering and Rehabilitation: Select Proceedings of TRACE 2018, 41-53. https://doi.org/10.1007/978-981-13-7615-3_3.
  37. Kumar, K.A. and Reddy, D.M. (2016), "Application of frequency response curvature method for damage detection in beam and platelike structures", IOP Conf. Ser.: Mater. Sci. Eng., 149(1), 012160. https://doi.org/10.1088/1757-899X/149/1/012160.
  38. Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curv. Layer. Struct., 6(1), 192-211. https://doi.org/10.1515/cls2019-0017.
  39. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  40. Meirovitch, L. (1975), Elements of Vibration Analysis, McGraw-Hill, Inc., New York.
  41. Meirovitch, L. (1991), Dynamics and Control of Structures, John Wiley and Sons.
  42. Merdaci, S., Adda, H.M., Hakima, B., Dimitri, R. and Tornabene, F. (2021), "Higher-order free vibration analysis of porous functionally graded plates", J. Compos. Sci., 5(11), 305. https://doi.org/10.3390/jcs5110305.
  43. Mukhopadhyay, T. (2018), "A multivariate adaptive regression splines-based damage identification methodology for web core composite bridges including the effect of noise", J. Sandw. Struct. Mater., 20(7), 885-903. https://doi.org/10.1177/10996362166825
  44. Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001.
  45. Nguyen, T.K., Nguyen, V.H. and Chau-Dinh, T. (2019), "Cell-and node-based smoothing MITC3-finite elements for static and free vibration analysis of laminated composite and functionally graded plates", Int. J. Computat. Meth., 16(08), 1850123. https://doi.org/10.1142/S0219876218501232.
  46. Nguyen-Thoi, T., Rabczuk, T., Ho-Huu, V., Le-Anh, L., Dang-Trung, H. and Vo-Duy, T. (2017), "An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates", Int. J. Computat. Meth., 14(02), 1750011. https://doi.org/10.1142/S0219876217500116.
  47. Oduro, S.D., Metia, S., Duc, H., Hong, G. and Ha, Q.P. (2015), "Multivariate adaptive regression splines models for vehicular emission prediction", Visual. Eng., 3, 1-12. https://doi.org/10.1186/s40327-015-0024-4.
  48. Pasha, A. and Rajaprakash, B.M. (2022), "Functionally graded materials (FGM) fabrication and its potential challenges and applications", Mater. Today: Proc., 52, 413-418. https://doi.org/10.1016/j.matpr.2021.09.077.
  49. Peng, L.X., Chen, S.Y., Chen, W. and He, X.C. (2023), "A moving kriging interpolation meshless for bending and free vibration analysis of the stiffened FGM plates in thermal environment", Int. J. Comput. Meth., 20(10), 2350015. https://doi.org/10.1142/S0219876223500159.
  50. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., ... & Schulte, K.J.M.S. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
  51. Pradhan, P., Sutar, M.K. and Pattnaik, S. (2019), "A state of the art in functionally graded materials and their analysis", Mater. Today: Proc., 18, 3931-3936. https://doi.org/10.1016/j.matpr.2019.07.333.
  52. Ram, S.C., Chattopadhyay, K. and Chakrabarty, I. (2017), "High temperature tensile properties of centrifugally cast in-situ Al-Mg2Si functionally graded composites for automotive cylinder block liners", J. Alloy. Compound., 724, 84-97. https://doi.org/10.1016/j.jallcom.2017.06.306.
  53. Raturi, H.P., Kushari, S., Karsh, P.K. and Dey, S. (2023), "Evaluating stochastic fundamental natural frequencies of porous functionally graded material plate with even porosity effect: A multi-machine learning approach", J. Vib. Eng. Technol., 12(2), 1931-1942. https://doi.org/10.1007/s42417-023-00954-0.
  54. Sarathchandra, D.T., Subbu, S.K. and Venkaiah, N. (2018), "Functionally graded materials and processing techniques: An art of review", Mater. Today: Proc., 5(10), 21328-21334. https://doi.org/10.1016/j.matpr.2018.06.536.
  55. Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  56. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
  57. Singh, H., Hazarika, B.C. and Dey, S. (2017), "Low velocity impact responses of functionally graded plates", Procedia Eng., 173, 264-270. https://doi.org/10.1016/j.proeng.2016.12.010.
  58. Siu, C.C. and Bert, C.W. (1970), "Free vibrational analysis of sandwich conical shells with free edges", J. Acoust. Soc. Am., 47(3B), 943-945. https://doi.org/10.1016/j.compstruct.2019.01.082.
  59. Teng, M.W. and Wang, Y.Q. (2021), "Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets", Thin Wall. Struct., 164, 107799. https://doi.org/10.1016/j.tws.2021.107799.
  60. Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010.
  61. Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Volume 3, Ferrous Alloys, Macmillan, New York.
  62. Uma, S.R. and Jain, S.K. (2006), "Seismic design of beam-column joints in RC moment resisting frames-Review of codes", Struct. Eng. Mech., 23(5), 579. https://doi.org/10.12989/sem.2006.23.5.579.
  63. Vaishali Kushari, S., Kumar, R.R., Karsh, P.K. and Dey, S. (2023), "Sensitivity analysis of random frequency responses of hybrid multi-functionally graded sandwich shells", J. Vib. Eng. Technol., 11(3), 845-872. https://doi.org/10.1007/s42417-022-00612-x.
  64. Wang, Y., Ye, C. and Zu, J. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  65. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  66. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  67. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50, 1331-1342. https://doi.org/10.1007/s11012-014-0094-8.
  68. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  69. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244,112298. https://doi.org/10.1016/j.compstruct.2020.112298.
  70. Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B: Eng., 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044.
  71. Zhao, T.Y., Liu, Z.F., Pan, H.G., Zhang, H.Y. and Yuan, H.Q. (2021), "Vibration characteristics of functionally graded porous nanocomposite blade-disk-shaft rotor system reinforced with graphene nanoplatelets", Appl. Compos. Mater., 28, 717-731. https://doi.org/10.1007/s10443-021-09880-4.
  72. Zhao, Y. and Peng, Z. (2020), "Frequency response function-based finite element model updating using extreme learning machine model", Shock Vib., 2020(1), 8526933. https://doi.org/10.1155/2020/8526933.
  73. Zhou, C., Deng, C., Chen, X., Zhao, X., Chen, Y., Fan, Y. and Zhang, X. (2015), "Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering", J. Mech. Behav. Biomed. Mater., 48, 1-11. https://doi.org/10.1016/j.jmbbm.2015.04.002.