DOI QR코드

DOI QR Code

보령 머드로부터 제조한 우수한 수명 안정성의 실리콘계 음극 소재

Boryeong Mud-Derived Silicon-Oxides Composite Anodes with Excellent Cycling Stability for Lithium-Ion Batteries

  • 김윤아 (단국대학교 에너지공학과) ;
  • 이재원 (단국대학교 에너지공학과)
  • Yun A Kim (Department of Energy Engineering, Dankook University) ;
  • Jae-Won Lee (Department of Energy Engineering, Dankook University)
  • 투고 : 2024.07.08
  • 심사 : 2024.09.30
  • 발행 : 2024.10.27

초록

Silicon-based anode materials have attracted significant interest because of their advantages, including high theoretical specific capacity (~4,200 mAh/g), low working potential (0.4 V vs Li/Li+), and abundant sources. However, their significant initial capacity loss and large volume changes during cycling impede the application of silicon-based anodes in lithium-ion batteries. In this work, we propose a silicon oxide (SiOx) anode material for lithium-ion batteries produced with a magnesio-thermic reduction (MTR) process adopting Boryeong mud as a starting material. Boryeong mud contains various minerals such as clinochlore [(Mg,Fe)6(Si,Al)4O10(OH)8], anorthite (CaAl2Si2O8), illite [K0.7Al2(Si,Al)4O10(OH)2], and quartz (SiO2). The MTR process with Boryeong mud generates a mixture of amorphous silicon oxides (SiOx and SiO2), and magnesium aluminate which helps to alleviate the volume expansion of the electrode during charge/discharge. To observe the effects of these oxides, we conducted various analyses including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-Transformation infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) and cyclic voltammetry (CV) galvanic cell testing. The amorphous SiO2 and MgAl2O4 suppressed the volume expansion of the silicon-based anode, and excellent cycle performance was achieved as a result.

키워드

과제정보

This work was supported by the Technology development Program (RS-2023-00270124) funded by the Ministry of SMEs and Startups (MSS, Korea). The authors also thank to Dr. Dae Weon Kim for providing Boryeong mud.

참고문헌

  1. X. Kong, Z. Xi, L. Wang, Y. Zhou, Y. Liu, L. Wang, S. Li, X. Chen and Z. Wan, Molecules, 28, 2079 (2023).
  2. W. Deng, Y. Zhou, N. Hu, S. Ni, W. Zhang and C. M. Li, Mater. Rep.: Energy, 4, 100270 (2024).
  3. X. B. Zhu, B. Liu, J. W. Shao, Q. C. Zhang, Y. Z. Wan, C. Zhong and J. Lu, Adv. Funct. Mater., 33, 2213363 (2023).
  4. Y. Yang, Y. Liu, X. Jiang, L. Zhao, P. Wang and Y. Zhang, Mater. Adv., 5, 896 (2024).
  5. C. X. Jin, J. L. Dan, Y. Zou, G. J. Xu, Z. H. Yue, X. M. Li, F. G. Sun, L. Zhou and L. Wang, Ceram. Int., 47, 29443 (2021).
  6. G. C. Yu, J. Y. Jing, C. Z. Li, Q. Li, Z. K. Yang, S. Y. Yao, T. Li and X. Bai, Prog. Nat. Sci.: Mater. Int., 33, 47 (2023).
  7. G. Li, L. B. Huang, M. Y. Yan, J. Y. Li, K. C. Jiang, Y. X. Yin, S. Xin, Q. Xu and Y. G. Guo, Nano Energy, 74, 104890 (2020).
  8. B. C. Yu, Y. Hwa, J. H. Kim and H. J. Sohn, Electrochim. Acta, 117, 426 (2014).
  9. F. Hong, R. X. Zhou, C. Y. Gao, Y. S. Liu, Z. J. Sun and Y. Jiang, J. Alloys Compd., 947, 169511 (2023).
  10. Q. Xiao, M. Gu, H. Yang, B. Li, C. Zhang, Y. Liu, F. Liu, F. Dai, L. Yang, Z. Liu, X. Xiao, G. Liu, P. Zhao, S. Zhang, C. Wang, Y. Lu and M. Cai, Nat. Commun., 6, 8844 (2015).
  11. C. C. Zhang, X. Cai, W. Y. Chen, S. Y. Yang, D. H. Xu, Y. P. Fang and X. Y. Yu, ACS Sustainable Chem. Eng., 6, 9930 (2018).
  12. K. Tang, A. Rasouli, J. Safarian, X. Ma and G. Tranell, Materials, 16, 4098 (2023).
  13. X. X. Zuo, Q. H. Yang, Y. L. He, Y. J. Cheng, S. S. Yin, J. Zhu, P. Muller-Buschbaum and Y. G. Xia, Molecules, 27, 7486 (2022).
  14. C. Y. Zhou, J. H. Liu, X. Z. Gong and Z. Wang, J. Alloys Compd., 874, 159914 (2021).
  15. N. Liu, K. Huo, M. T. McDowell, J. Zhao and Y. Cui, Sci. Rep., 3, 1919 (2013).
  16. X. Y. Zhou, L. L. Wu, J. Yang, J. J. Tang, L. H. Xi and B. Wang, J. Power Sources, 324, 33 (2016).
  17. S. N. Liu, Q. Zhang, H. M. Yang, D. W. Mu, A. Q. Pan and S. Q. Liang, Minerals, 8, 180 (2018).
  18. J. Entwistle, A. Rennie and S. Patwardhan, J. Mater. Chem. A, 6, 18344 (2018).
  19. T. Bok, S. Choi, J. Lee and S. Park, J. Mater. Chem. A, 2, 14195 (2014).
  20. X. Q. Dai, H. T. Liu, X. Liu, Z. L. Liu, Y. S. Liu, Y. H. Cao, J. Y. Tao and Z. Q. Shan, Chem. Eng., 418, 129468 (2021).
  21. N. Obradovic, W. G. Fahrenholtz, C. Corlett, S. Filipovic, M. Nikolic, B. A. Marinkovic, S. Failla, D. Sciti, D. Di Rosa and E. Sani, Materials, 14, 7674 (2021).
  22. B. Zhang, F. Wang, J. Chen, B. Li, K. Liu and Q. Han, Silicon, 14, 8409 (2022).
  23. J. W. DuMont, A. E. Marquardt, A. M. Cano and S. M. George, ACS Appl. Mater. Interfaces, 9, 10296 (2017).
  24. J. E. Son, J. H. Yim and J. W. Lee, Electrochem. Commun., 152, 107517 (2023).
  25. J. Zhang, Z. Hou, X. Zhang, L. Zhang and C. Li, Ionics, 26, 69 (2020).
  26. A. Mukanova, A. Nurpeissova, S. S. Kim, M. Myronov and Z. Bakenov, ChemistryOpen, 7, 92 (2018).
  27. B. Li, F. Yao, J. J. Bae, J. Chang, M. R. Zamfir, D. T. Le, D. T. Pham, H. Yue and Y. H. Lee, Sci. Rep., 5, 7659 (2015).
  28. T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, G. Stephani, R. Hauser, J. Eckert and L. Giebeler, Energy Storage Mater., 6, 26 (2017).