DOI QR코드

DOI QR Code

Improvement on Encapsulation Properties of Solar Cells Via Low-Temperature Atomic Layer Deposition

저온 원자층 증착 공정을 통한 태양전지 봉지층 특성 향상

  • Ho Jae Ki (Department of Materials Science and Engineering, Chonnam National University) ;
  • Yong Tae Kim (Department of Materials Science and Engineering, Chonnam National University) ;
  • Sang Won Lee (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jaeyeong Heo (Department of Materials Science and Engineering, Chonnam National University)
  • 기호재 (전남대학교 신소재공학과) ;
  • 김용태 (전남대학교 신소재공학과) ;
  • 이상원 (전남대학교 신소재공학과) ;
  • 허재영 (전남대학교 신소재공학과)
  • Received : 2024.07.22
  • Accepted : 2024.09.22
  • Published : 2024.10.27

Abstract

Perovskite-based solar cells have recently exhibited rapid improvement in power conversion efficiency due to their high optical and electrical properties. However, perovskite materials are fundamentally degraded by heat and moisture, making long-term stability a critical issue. One way to improve the stability of perovskite solar cells is to encapsulate them. However, a low temperature encapsulation process of less than 100 ℃ is needed to minimize degrading the perovskite materials. High moisture barrier properties are also required. To realize a high performance encapsulation layer at low temperature we employed atomic layer deposition (ALD) technique. As the encapsulation layer materials, Al2O3, which is most commonly used due to its high density and optical properties, and SnO2, which is mainly used as an electron transport layer in perovskite solar cells, were selected. Single film and multi-layer structured films of Al2O3 and SnO2 were deposited, and the structural, optical, and moisture permeability properties were investigated.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, No. 2022R1A2C2006532) and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03024334).

References

  1. A. G. Olabi and M. A. Abdelkareem, Renewable Sustainable Energy Rev., 158, 112111 (2022).
  2. J. S. Shaikh, N. S. Shaikh, A. D. Sheikh, S. S. Mali, A. J. Kale, P. Kanjanaboos, C. K. Hong, J. H. Kim and P. S. Patil, Mater. Des., 136, 54 (2017).
  3. Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. K. McGehee, E. H. Sargent and H. Han, Science, 361, 1214 (2018).
  4. N. N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y.-B. Cheng and U. Bach, Adv. Energy Mater., 7, 1602761 (2017).
  5. N. H. Tiep, Z. Ku and H. J. Fan, Adv. Energy Mater., 6, 1501420 (2016).
  6. S. Kang, S. Lee and J. H. Noh, Korean J. Mater. Res., 33, 344 (2023).
  7. A. Uddin, M. B. Upama, H. Yi and L. Duan, Coatings, 9, 65 (2019).
  8. J. Ruellou, M. Courty and F. Sauvage, Adv. Funct. Mater., 33, 2300811 (2023).
  9. Y. Shi and F. Zhang, Sol. RRL, 7, 2201123 (2023).
  10. S. Shin, G. Ham, H. Jeon, J. Park, W. Jang and H. Jeon, Korean. J. Mater. Res., 23, 405 (2013).
  11. R. W. Johnson, A. Hultqvist and S. F. Bent, Mater. Today, 17, 236 (2014).
  12. S. M. George, Chem. Rev., 110, 111 (2010).
  13. Z. Li, Y. Tian, C. Teng and H. Cao, Materials, 13, 5049 (2020).
  14. J. Oh, S. Shin, J. Park, G. Ham and H. Jeon, Thin Solid Films, 599, 119 (2016).
  15. S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li and Q. Chen, Energy Environ. Sci., 15, 13 (2022).
  16. S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung and H. Jeon, Curr. Appl. Phys., 14, 552 (2014).
  17. D. T. Clark, B. J. Cromarty and A. Dilks, J. Polym. Sci., Polym. Chem. Ed., 16, 3173 (1978).
  18. A. C. Dillon, A. W. Ott, J. D. Way and S. M. George, Surf. Sci., 322, 230 (1995).
  19. A. W. Ott, J. W. Klaus, J. M. Johnson and S. M. George, Thin Solid Films, 292, 135 (1997).
  20. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater., 16, 639 (2004).
  21. S.-W. Seo, E. Jung, C. Lim, H. Chae and S. M. Cho, Appl. Phys. Express, 5, 035701 (2012).