DOI QR코드

DOI QR Code

몽골 울란바토르 복드칸 궁전 및 초이진 라마사원 벽돌과 기와의 재료학적 특성 및 고고과학적 의미

Archaeometric Implication and Material Characteristics for Bricks and Roof Tiles from the Bogd Khaan Palace and Choijin Lama Temple in Ulaanbaatar, Mongolia

  • 수흐 바트바타르 (국립공주대학교 문화재보존과학과) ;
  • 양혁주 (국립공주대학교 문화재보존과학과) ;
  • 이찬희 (국립공주대학교 문화재보존과학과)
  • Suh Batbaatar (Department of Cultural Heritage Conservation Sciences, Kongju National University) ;
  • Hyukju Yang (Department of Cultural Heritage Conservation Sciences, Kongju National University) ;
  • Chan Hee Lee (Department of Cultural Heritage Conservation Sciences, Kongju National University)
  • 투고 : 2024.08.29
  • 심사 : 2024.10.06
  • 발행 : 2024.10.29

초록

근대 몽골건축을 대표하는 복드칸 궁과 초이진 사원의 초축 및 보수 벽돌과 기와를 대상으로 재질 및 고고과학적 특성을 분석하였다. 이 벽돌과 기와는 밝은 회색을 띄며, 초축에 비해 보수한 것에서 대부분 가비중과 공극률이 높았다. 태토에서는 공통적으로 아각형의 조립질 석영, 알칼리장석, 사장석 및 운모가 산출되며, 부분적으로 각섬석이 검출되었다. 초축 벽돌과 기와에 비해 보수한 것에서 기질이 균질하고 비짐이 현저히 적은 것으로 보아 정선된 기술이 적용된 것으로 보인다. 이 벽돌과 기와의 중량감소는 초축한 것보다 보수한 것에서 낮았고, 열변질은 있으나 재결정은 나타나지 않았다. 또한 초축 벽돌과 기와에서 Al2O3가 높았고 보수한 것에서는 CaO가 높고 Na2O와 작열감량은 낮았다. 그러나 다른 원소들은 거의 동일한 거동특성을 보여, 이들은 장소와 시기에 차이 없이 성인적으로 동질성 높은 태토를 사용한 것으로 해석된다. 따라서 초축 벽돌과 기와의 원료가 보수에 활용한 것에 비해 점토화도는 높았으나, 이들은 거의 같은 토양을 태토로 조달했을 가능성이 높으며, 소성환경이 태토의 지구화학적 거동에 영향을 주지 않은 것으로 보인다. 그러나 보수 벽돌과 기와에서 Al2O3와 CaO가 높다는 것은 태토의 부분적인 정선과 혼입이 있었을 가능성을 지시한다. 모든 벽돌과 기와에서는 고온성 광물은 없었으며, 운모와 각섬석의 검출과 점토광물의 부재 및 기질의 열변질 상태로 보아 이들의 소성온도는 850~900℃로 해석된다. 이는 보수에 사용한 벽돌과 기와에서도 거의 일치하였다. 이 결과는 몽골의 근대건축에 활용한 벽돌과 기와의 재료학적 자료로 중요한 의미가 있으며, 향후 보수용 벽돌과 기와의 제작기법을 검토하는데 유용한 근거가 될 것이다.

Material and archaeometric characteristics of the original and repaired bricks and roof tiles of the Bogd Khaan Palace and the Choijin Lama Temple, which represent modern Mongolian architecture, were analyzed. These bricks and roof tiles are light gray, and the repaired ones mostly had higher specific gravity and porosity than the original ones. In the body clay, coarse grained sub-angular quartz, alkali feldspar, plagioclase and mica are commonly observed, and hornblende was partially detected. Compared to the original bricks and roof tiles, the repaired ones have a homogeneous substrate and significantly less tempers, suggesting that refined techniques were applied. Weight loss of these bricks and roof tiles was lower in the repaired ones than the original ones, and although there were thermal deformation and non recrystallized. Also, Al2O3 was high in the original bricks and roof tiles, and CaO was high in the repaired ones, and Na2O and ignition loss were low. However, since the other elements showed almost the same behavioral characteristics, it is interpreted that they used homogeneous body clay regardless of location and time. Therefore, the clay content of the raw materials for the original bricks and roof tiles were higher than that used for the repair, but it is highly likely that they were procured from almost the same soil as the body clay, and the firing environment does not seem to have affected the geochemical behavior of the body clay. But, the high Al2O3 and CaO in the repaired bricks and roof tiles indicates the possibility of partial refinement and mixing of the clay. There were no high-temperature minerals in all the bricks and roof tiles, and based on the detection of mica and hornblende, the absence of clay minerals and the thermal deformations of the substrate, their firing temperature is presumed to be 850 to 900℃. This was almost the same in the bricks and roof tiles used for the repairs. This result is significant as material science data for the bricks and roof tiles used in modern Mongolian architecture, and will be useful grounds for examining the making techniques of bricks and roof tiles for future restorations.

키워드

참고문헌

  1. Adachi, M., Yoshida, H., Tsukada, K., Dorjsuren, B., Sersmaa, G., Majigsuren, U. and Minjin, C. (2007) A petrographical note on granophyre cobble from the Carboniferous conglomerate in the Ulaanbaatar terrane, central Mongolia. Bulletin of Nagoya University Museum, v.23, p.13-20. (in Japanese with English abstract) 
  2. Altantsetseg, J., Badamkhand, U. and Khishigjargal, N. (2007) Some result of study on air temperature in eastern region of Mongolia. In: Proceeding of Joint Symposium of Mongolia and Russia on Climate Change, p.46-51. 
  3. Badarch, G., Cunningham, W.D. and Windley, B. (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v.21(1), p.87-110. doi: 10.1016/s1367-9120(02)00017-2 
  4. Chuluun, S. (2019) In search of the Khutugtu's monastery: The site and its heritage. Cross-Currents: East Asian History and Culture Review, v.8(2), p.287-305. https:// doi.org/10.1353/ach.2019.0012 
  5. Govindaraju, K. (1989) Compilation of working values and samples description for 272 geostandards. Geostandards Newsletter, v.13, p.1-113. doi: 10.1111/j.1751-908x.1989.tb00476.x 
  6. Hong, E.K. and Erdenetsogt, T. (2020) A study on the changing process of the layout of the Choijin Lama temple in Mongolia. Mongolian Studies, v.61, p.137-162. (in Korean with English abstract) UCI:I410-ECN-0102-2021-900-000808043.  I410-ECN-0102-2021-900-000808043
  7. Jang, S.Y. and Lee, C.H. (2014) Mineralogical study on interpretation of firing temperature of ancient bricks: Focused on the bricks from the Songsanri tomb complex. Journal of Conservation Science, v.30(4), p.395-407. (in Korean with English abstract) http:// dx.doi.org/10.12654/JCS.2014.30.4.08. 
  8. Jo, Y.H. and Lee, C.H. (2018) Material characteristics and building technique for the rammed earth wall of the 13th Korean fortress in Ganghwa. Environmental Earth Sciences, v.77(617), p.1-15. doi: 10.1007/s12665-018-7792-9 
  9. Jo, Y.H., Park, J.H., Hong, E. and Han, W. (2020) Three-dimensional digital documentation and accuracy analysis of the Choijin Lama temple in Mongolia. Journal of Conservation Science, v.36(4), p.264-274. doi: 10.12654/jcs.2020.36.4.04 
  10. Kelley, S.J. (2020) Choijin Lama Temple Museum Conservation Management Plan. Arts Council of Mongolia, Ulaanbaatar. 1-84. 
  11. Kim, R.H., Lee, S.M., Jang, S.Y. and Lee, C.H. (2009) Interpretation of firing temperature and material characteristics of the potteries excavated from the Nongseori site in Giheung, Korea. Journal of Conservation Science, v.25(3), p.255-271. (in Korean with English abstract)
  12. Lee, C.H., Jin, H.J., Choi, J.S. and Na, G.J. (2016) Interpretation on making techniques of some ancient ceramic artifacts from midwestern Korean peninsula: Preliminary study. Journal of Conservation Science, v.32(2), p.273-291. (in Korean with English abstract) http://dx.doi.org/10.12654/JCS.2016.32.2.15 
  13. Lee, C.H., Kim, R.H. and Shin, S.J. (2018) Interpretation of manufacturing characteristics, mineral and chemical compositions for Neolithic pottery from the Jungsandong site in Yeongjong island, Korea. Korean Journal of Cultural Heritage Studies, v.51(1), p.4-31. (in Korean with English abstract)
  14. Lee, C.H., Kim, S.T., Chae, W.M. and Park, J.H. (2023) Provenance interpretation and petrological characteristics of the Four Lion Three-story Stone Pagoda and Stone Lantern in Hwaeomsa temple, Korea. Journal of Conservation Science, v.39(1), p.36-53. (in Korean with English abstract) https://doi.org/10.12654/JCS.2023.39.1.04 
  15. Munkhzul, G. (2021) Architectural planning study of Bogd Khan's Palace Museum. Compilation of Scientific Works, Mongolian University of Science and Technology, p.1-2. (in Mongolian) 
  16. National Research Institute of Cultural Heritage in Korea (2019) Mongolian National Architecture: Choijin Lama Temple, v.4, p.1-348. (in Korean with Mongolian abstract)
  17. Nockolds, S.R. and Allen, R. (1954) Average chemical compositions of some igneous rocks. Geological Society of American Bulletin, v.65, p.1007-1032. doi: 10.1130/0016-7606(1954)65[1007:accosi]2.0.co;2 
  18. Ochir, A. and Enkhtuvshin, B. (2003) History of Mongolia, Volume 4. In Enkhtuvshin, B. (Ed) Institute of History, Mongolian Academy of Sciences, Ulaanbaatar, p.424. (in Mongolian) 
  19. Oyunbat, P., Batkhishig, O. and Purevtseren, M. (2023) Soil pollution of Ulaanbaatar city and challenging issues. Thesis for Ph.D., National University of Mongolia, p.177. (in Mongolian with English abstract) doi: 10.13140/RG.2.231625.42085 
  20. Oyunbileg, Z. (2020) A study of the condition of the complex construction of Bogd Khan's Palace. Bogd Khan Palace Museum Impact Study Report 2019: A study of the influence of natural and social factors of the Bogd Khaan Palace Museum, Arts Council of Mongolia, p.95-115. (in Mongolian) 
  21. Park, J.H., Lee, G.H. and Lee, C.H. (2019) Consideration for historical application of augen gneiss and petrographic characteristics for rock properties of Donghachong tomb from Royal Tombs of Neungsanri in Buyeo, Korea. Economic and Environmental Geology, v.52(1), p.91-106. (in Korean with English abstract) doi: 10.9719/EEG.2019.52.1.91 
  22. Park, S.T., Lee, J. and Lee, C.H. (2022) Evaluation and physicochemical property for building materials from the Japanese Ministry of General Affairs in Joseon Dynasty. Economic and Environmental Geology, v.55(4), p.317-338. (in Korean with English abstract) http://dx.doi.org/10.9719/EEG.2022.55.4.317 
  23. Pearce, J.A. (1983) Role of sub-continental lithosphere in magma genesis at active continental margines. In Hawkesworth, C.J. and Norry, M.J. (eds.), Continental basalts and mantle xenolith, Shiva, p.230-249. 
  24. Shabanova, E.V., Byambasuren, T., Ochirbat, G., Vasil'eva, I.E., Khuukhenkhuu, B. and Korolkov, A.T. (2019) Relationship between major and trace elements in Ulaanbaatar soils: A study based on multivariate statistical analysis. Geography Environment Sustainability, v.12(3), p.99-212. doi: 10.24057/2071-9388-2019-18 
  25. Sneath, D. and Kaplonski, C. (2010) The History of Mongolia. Global Orient, v.4, p.320. doi: 10.1163/9789004216358 
  26. Taylor, S.R. and McLennan, S.M. (1985) The continental crust: Its composition and evolution. Blackwell, Oxford, p.312. doi: 10.1002/gj.3350210116 
  27. Tomurtogoo, O. (2006) Devonian-Carboniferous accretionary complex of the Ulaanbaatar Terrane. In: Structural and Tectonic Correlation across the Central Asia Orogenic Collage. The Second International Workshop and Field Excursions for IGCP 480, Abstracts and Excursion Guidebook, Institute of Geology and Mineral Recourses, Mongolian Academy of Sciences, p.100-106. http://www.igcp.itu.edu.tr/Publications/Tomurtogoo_06 
  28. Tsultemin, U. (2017) Cartographic anxieties in Mongolia: The Bogd Khaan's Picture Map. Cross-Currents: East Asian History and Culture Review, v.6(1), p.74-97. https://doi.org/10.1353/ach.2017.0003. 
  29. Wright, J. (2021) Prehistoric Mongolian archaeology in the early 21st century: Developments in the steppe and beyond. Journal of Archaeological Research, v.29, p.431-479. https://doi.org/10.1007/s10814-020-09152-y.