Mineral composition used to identify the sedimentary environment can be obtained through X-ray diffraction (XRD) analysis. However, due to time constraints for analyzing a large number of samples, a machine learning-based mineral composition analysis model was developed. This model demonstrated reasonable reliability for samples with usual compositions but showed poor performance for unusual samples. Consequently, a clustering model has recently been developed to classify the unusual samples, allowing experts to handle. The purpose of this study is to examine the applicability of the clustering model, developed using XRD data from the Ulleung Basin in previous study, using samples from different regions. Research data consist of intensity profile from XRD experiment and its mineral composition analysis for a total of 54 sediment samples from the Korea Plateau, located northwest of the Ulleung Basin. Because the intensity of samples in the Korea Plateau comprises 7,420 values (3.005-64.996°), differing from 3,100 values (3.01-64.99°) of samples in the Ulleung Basin, linear interpolation was used to align the input feature. Then, min-max scaler was applied to intensity profile for each sample to preserve the trend and peak ratio of the intensity. Applying the clustering model to the 54 preprocessed intensity profiles, 35 samples and 19 samples were classified into expert and machine learning groups, respectively. For machine learning group, false positive was zero among the 19 samples. This means that the clustering model can increase reliability in when mineral composition from machine learning model because unusual sample did not belong to the machine learning group. For the 35 samples in expert group, the 31 samples were classified as false negative (FN). It means that although machine learning model can properly analyze these samples, they were assigned to expert group. However, when these FN samples were analyzed using machine learning based composition analysis model, a high mean absolute error of 2.94% was observed. Therefore, it is reasonable that the samples were assigned to expert group.
퇴적물 생성환경 규명에 사용되는 광물조성자료는 X-선 회절(X-ray diffraction, XRD)분석을 통해 얻을 수 있으나, 대규모 시료에 대한 조성분석 시 효율적인 분석을 위해 머신러닝 기반 광물조성 분석모델이 개발되었다. 해당 모델은 일반조성 시료에 대해 준수한 분석신뢰도를 보였으나, 특이조성을 가지는 시료에 대해서는 저조한 성능을 보였다. 이에 따라 최근 전체 시료 중 특이조성시료를 전문가가 분석할 수 있도록 분류하는 군집화모델이 개발되었다. 본 연구에서는 울릉분지 XRD 시료로 개발한 군집화모델의 타 지역 시료에 대한 적용가능성을 검토하고자 한다. 연구자료는 울릉분지 북서쪽에 위치한 한국대지의 54개 퇴적물 시료에 대한 XRD 실험 및 전문가 광물조성 분석결과로 구성된다. 한국대지 시료의 intensity는 7,420개(3.005-64.996°)로, 울릉분지 3,100개(3.01-64.99°)와 차이를 보여 선형보간을 활용해 일치시켰다. 이후 intensity 비율과 경향성을 보존하기 위해 시료별 최소-최대 정규화를 수행하였다. 전처리한 실험자료에 군집화모델을 적용한 결과, 54개 시료 중 전문가분석은 35개, 머신러닝분석은 19개로 배정되었다. 머신러닝분석으로 판단된 19개 시료 중 false positive(FP)는 0으로, 머신러닝분석 군집에 특이조성시료가 존재하지 않음을 확인하였다. FP는 실제 특이조성을 가져 전문가분석이 필요하지만 머신러닝이 분석하는 것으로 판단된 것을 의미하기 때문에 FP가 적을수록 머신러닝 모델 적용 시 높은 분석신뢰도를 기대할 수 있다. 전문가분석의 경우 35개 중 31개 시료가 false negative로 배정되었으며, 이는 머신러닝이 분석해도 무방하나 전문가가 분석해야할 시료 수가 전체의 57%임을 의미한다. 그러나 해당 시료들을 머신러닝기반 조성분석모델로 분석할 경우 2.94%의 높은 평균절대오차의 평균을 보이기 때문에 전문가분석 군집으로 배정된 것을 합리적으로 평가할 수 있다.
본 연구는 가스하이드레이트 사업단의 지원하에 수행중인 한국지질자원연구원의 심층학습기반 GH 저류층 분석모델 개발(No. GP2021-010) 프로젝트의 지원으로 수행되었습니다. 또한 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며(No. 2021R1C1C1004460), 2021년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행된 연구입니다(데이터사이언스 기반 석유·가스 탐사 컨소시엄, 2021060001). 이 논문은 2023년 공주대학교 학술연구지원사업의 연구지원에 의하여 연구되었습니다.
References
Arthur, D. and Vassilvitskii, S. (2007) K-means++: The advantages of careful seeding. Presented at the eighteenth annual ACMSIAM symposium on Discrete algorithms. New Orleans, LA, USA, 7-9 January.
Jin, H., Park, J., Park, S.Y., Son, B.-K., Min, B. and Lee, K. (2024) Effect of preprocessing on performances of machine learning-based mineral composition analysis on gas hydrate sediments, Ulleung Basin, East Sea. Pet. Sci. (under 5th round review).
Khim B.K., Park, Y.H., Bahk, J.J., Jim, J.H. and Lee, G.H. (2008) Spatial and temporal variation of geochemical properties and paleoceanographic implications in the South Korea Plateau (East Sea) during the late Quaternary. Quat. Int. v.176-177, p.46-61. doi: 10.1016/j.quaint.2007.04.004.
Kim K.-J., Yoo, D.-G., Yi, B.-Y. and Kang, N.-K. (2023) Seismic stratigraphy and structural evolution of the South Korea Plateau, East Sea (Sea of Japan). Basin Res. v.36(1), e12805. doi: 10.1111/bre.12805.
Lee, G.H., Kim, H.-J., Jou, H.-T. and Cho, H.-M. (2003) Opal-A/ opal-CT phase boundary inferred from bottom-simulating reflectors in the southern South Korea Plateau, East Sea (Sea of Japan). Geophys. Res. Lett. v.30(24), 2238. doi: 10.1029/2003GL018670.
Lee, J.W., Park, W.B., Lee, J.H., Singh, S.P. and Sohn, K.S. (2020) A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. Nat. Commun. v.11, 86. doi: 10.1038/s41467-019-13749-3.
Park, J.Y., Jin, H., Park, S.Y., Choi, J., Ning, F., Chen, Z. and Lee, K. (2024) Development of clustering model for XRD experimental data to improve mineral composition analysis in the Ulleung Basin, Korea. Geoenergy Sci. Eng. (under 1st round review).
Park, S.Y., Son, B.-K., Choi, J., Jin, H. and Lee, K. (2022) Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, Ulleung Basin, Korea. J. Pet. Sci. Eng. v.209, 109840. doi: 10.1016/j.petrol.2021.109840.
Schuetzke, J., Benedix, A., Mikut, R. and Reischl, M. (2021) Enhancing deep-learning training for phase identification in powder X-ray diffractograms. IUCrJ. v.8(3), p.408-420. doi: 10.1107/S2052252521002402.
Yoon, S.-H., Bahk, J.-J. and Han, S.-J. (2003) Late Quaternary Depositional Processes in the Korea Plateau and Ulleung Interplain Gap, East Sea. J. Korean Soc. Oceanogr., v.8(2), p.187-198.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.