과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF- 2019M3E5D1A02069065 to J.K.Y and RS-2024-00353561 to J.-S.M.) and Soonchunhyang University Research Fund.
참고문헌
- Collaborators GBDCoD (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736-1788 https://doi.org/10.1016/S0140-6736(18)32203-7
- Llovet JM and Beaugrand M (2003) Hepatocellular carcinoma: present status and future prospects. J Hepatol 38 Suppl 1, S136-149 https://doi.org/10.1016/S0168-8278(02)00432-4
- Farazi PA and DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687 https://doi.org/10.1038/nrc1934
- Anstee QM, Reeves HL, Kotsiliti E, Govaere O and Heikenwalder M (2019) From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 16, 411-428 https://doi.org/10.1038/s41575-019-0145-7
- Hsu PP and Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707 https://doi.org/10.1016/j.cell.2008.08.021
- Vander Heiden MG, Cantley LC and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 https://doi.org/10.1126/science.1160809
- Xia H, Huang Z, Xu Y, Yam JWP and Cui Y (2022) Reprogramming of central carbon metabolism in hepatocellular carcinoma. Biomed Pharmacother 153, 113485
- Jang M, Kim SS and Lee J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45, e45
- Mathupala SP, Ko YH and Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 19, 17-24 https://doi.org/10.1016/j.semcancer.2008.11.006
- Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16, 635-649 https://doi.org/10.1038/nrc.2016.77
- Mathupala SP, Ko YH and Pedersen PL (2006) Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25, 4777-4786 https://doi.org/10.1038/sj.onc.1209603
- Guzman G, Chennuri R, Chan A et al (2015) Evidence for heightened hexokinase II immunoexpression in hepatocyte dysplasia and hepatocellular carcinoma. Dig Dis Sci 60, 420-426 https://doi.org/10.1007/s10620-014-3364-3
- Sluyter R (2017) The P2X7 receptor. Adv Exp Med Biol 1051, 17-53 https://doi.org/10.1007/5584_2017_59
- Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA and Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277-1283 https://doi.org/10.1016/S0028-3908(97)00140-8
- Pelegrin P, Barroso-Gutierrez C and Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180, 7147-7157 https://doi.org/10.4049/jimmunol.180.11.7147
- Qu Y and Dubyak GR (2009) P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways. Purinergic Signal 5, 163-173 https://doi.org/10.1007/s11302-009-9132-8
- Amoroso F, Falzoni S, Adinolfi E, Ferrari D and Di Virgilio F (2012) The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis 3, e370
- Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P and Jiang LH (2015) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta 1848, 2584-2602 https://doi.org/10.1016/j.bbamem.2014.10.029
- Li X, Bai X, Tang Y, Qiao C, Zhao R and Peng X (2023) Research progress on the P2X7 receptor in liver injury and hepatocellular carcinoma. Chem Biol Drug Des 101, 794-808 https://doi.org/10.1111/cbdd.14182
- Liu H, Liu W, Liu Z et al (2015) Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection. Tumour Biol 36, 5039-5049 https://doi.org/10.1007/s13277-015-3155-2
- Asif A, Khalid M, Manzoor S, Ahmad H and Rehman AU (2019) Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors. Purinergic Signal 15, 367-374 https://doi.org/10.1007/s11302-019-09675-0
- Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39, 647-652 https://doi.org/10.2337/diab.39.6.647
- Guo D, Meng Y, Jiang X and Lu Z (2023) Hexokinases in cancer and other pathologies. Cell Insight 2, 100077
- Feng J, Li J, Wu L et al (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 39, 126
- Robey RB and Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683-4696 https://doi.org/10.1038/sj.onc.1209595
- Ye Y, Yu B, Wang H and Yi F (2023) Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci 10, 1242059
- Marsico M, Santarsiero A, Pappalardo I et al (2021) Mitochondria-mediated apoptosis of HCC cells triggered by knockdown of glutamate dehydrogenase 1: perspective for its inhibition through quercetin and permethylated anigopreissin A. Biomedicines 9, 1664
- Shen A, Tang C, Wang Y et al (2013) A systematic review of sorafenib in Child-Pugh A patients with unresectable hepatocellular carcinoma. J Clin Gastroenterol 47, 871-880 https://doi.org/10.1097/MCG.0b013e3182a87cfd
- Facciorusso A, Tartaglia N, Villani R et al (2021) Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: a systematic review and meta-analysis. Am J Transl Res 13, 2379-2387
- Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382, 1894-1905 https://doi.org/10.1056/NEJMoa1915745
- Abou-Alfa GK, Lau G, Kudo M et al (2022) Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 1, EVIDoa2100070
- Faria RX, Freitas HR and Reis RAM (2017) P2X7 receptor large pore signaling in avian Muller glial cells. J Bioenerg Biomembr 49, 215-229
- Freitas HR and Reis RA (2017) Glutathione induces GABA release through P2X(7)R activation on Muller glia. Neurogenesis (Austin) 4, e1283188
- Freitas HR, Ferraz G, Ferreira GC et al (2016) Glutathione-induced calcium shifts in chick retinal glial cells. PLoS One 11, e0153677
- Kawano A, Tsukimoto M, Noguchi T et al (2012) Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages. Biochem Biophys Res Commun 419, 374-380 https://doi.org/10.1016/j.bbrc.2012.01.156
- Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S and Inoue K (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78, 1339-1349 https://doi.org/10.1046/j.1471-4159.2001.00514.x
- Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M and Inoue K (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108, 115-125 https://doi.org/10.1111/j.1471-4159.2008.05744.x