DOI QR코드

DOI QR Code

Inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human hepatocellular carcinoma

  • Jae Kook Yang (Department of Internal Medicine, Soonchunhyang University College of Medicine Cheonan Hospital) ;
  • Junhyung Kim (Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University) ;
  • Young Hyeon Ahn (Department of Internal Medicine, Soonchunhyang University College of Medicine Cheonan Hospital) ;
  • Sang Ho Bae (Department of Surgery, Soonchunhyang University College of Medicine Cheonan Hospital) ;
  • Moo-Jun Baek (Department of Surgery, Soonchunhyang University College of Medicine Cheonan Hospital) ;
  • Sae Hwan Lee (Department of Internal Medicine, Soonchunhyang University College of Medicine Cheonan Hospital) ;
  • Jong-Seok Moon (Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University)
  • 투고 : 2024.05.10
  • 심사 : 2024.09.01
  • 발행 : 2024.10.31

초록

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. HCC occurs people with chronic liver diseases. The purinergic receptor P2X 7 (P2RX7) is involved in tumor proliferation and growth. Also, P2RX7 is associated with tumor invasion and metastatic dissemination. High glucose utilization is important for the survival of various types of tumors. However, the role of P2RX7 in glucose metabolism and cellular survival of HCC remains unclear. Here, our results show that the gene and protein levels of P2RX7 were elevated in tumor cells of patients with HCC. The pharmacological inhibition of P2RX7 by A-804598, a selective P2RX7 antagonist, and genetic inhibition by P2RX7 knockdown suppressed the glycolytic activity by reduction of hexokinase 2 (HK2), a key enzyme of the glycolysis pathway, in human HCC cells. Also, both A-804598 treatment and P2RX7 knockdown induced cytotoxicity via inhibition of AKT activation which is critical for tumor cell survival in human HCC cells. Moreover, A-804598 treatment and P2RX7 knockdown increased cytotoxicity and caspase-3 activation in human HCC cells. These results suggest that inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human HCC.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF- 2019M3E5D1A02069065 to J.K.Y and RS-2024-00353561 to J.-S.M.) and Soonchunhyang University Research Fund.

참고문헌

  1. Collaborators GBDCoD (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736-1788 https://doi.org/10.1016/S0140-6736(18)32203-7
  2. Llovet JM and Beaugrand M (2003) Hepatocellular carcinoma: present status and future prospects. J Hepatol 38 Suppl 1, S136-149 https://doi.org/10.1016/S0168-8278(02)00432-4
  3. Farazi PA and DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687 https://doi.org/10.1038/nrc1934
  4. Anstee QM, Reeves HL, Kotsiliti E, Govaere O and Heikenwalder M (2019) From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 16, 411-428 https://doi.org/10.1038/s41575-019-0145-7
  5. Hsu PP and Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707 https://doi.org/10.1016/j.cell.2008.08.021
  6. Vander Heiden MG, Cantley LC and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 https://doi.org/10.1126/science.1160809
  7. Xia H, Huang Z, Xu Y, Yam JWP and Cui Y (2022) Reprogramming of central carbon metabolism in hepatocellular carcinoma. Biomed Pharmacother 153, 113485
  8. Jang M, Kim SS and Lee J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45, e45
  9. Mathupala SP, Ko YH and Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 19, 17-24 https://doi.org/10.1016/j.semcancer.2008.11.006
  10. Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16, 635-649 https://doi.org/10.1038/nrc.2016.77
  11. Mathupala SP, Ko YH and Pedersen PL (2006) Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25, 4777-4786 https://doi.org/10.1038/sj.onc.1209603
  12. Guzman G, Chennuri R, Chan A et al (2015) Evidence for heightened hexokinase II immunoexpression in hepatocyte dysplasia and hepatocellular carcinoma. Dig Dis Sci 60, 420-426 https://doi.org/10.1007/s10620-014-3364-3
  13. Sluyter R (2017) The P2X7 receptor. Adv Exp Med Biol 1051, 17-53 https://doi.org/10.1007/5584_2017_59
  14. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA and Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277-1283 https://doi.org/10.1016/S0028-3908(97)00140-8
  15. Pelegrin P, Barroso-Gutierrez C and Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180, 7147-7157 https://doi.org/10.4049/jimmunol.180.11.7147
  16. Qu Y and Dubyak GR (2009) P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways. Purinergic Signal 5, 163-173 https://doi.org/10.1007/s11302-009-9132-8
  17. Amoroso F, Falzoni S, Adinolfi E, Ferrari D and Di Virgilio F (2012) The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis 3, e370
  18. Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P and Jiang LH (2015) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta 1848, 2584-2602 https://doi.org/10.1016/j.bbamem.2014.10.029
  19. Li X, Bai X, Tang Y, Qiao C, Zhao R and Peng X (2023) Research progress on the P2X7 receptor in liver injury and hepatocellular carcinoma. Chem Biol Drug Des 101, 794-808 https://doi.org/10.1111/cbdd.14182
  20. Liu H, Liu W, Liu Z et al (2015) Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection. Tumour Biol 36, 5039-5049 https://doi.org/10.1007/s13277-015-3155-2
  21. Asif A, Khalid M, Manzoor S, Ahmad H and Rehman AU (2019) Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors. Purinergic Signal 15, 367-374 https://doi.org/10.1007/s11302-019-09675-0
  22. Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39, 647-652 https://doi.org/10.2337/diab.39.6.647
  23. Guo D, Meng Y, Jiang X and Lu Z (2023) Hexokinases in cancer and other pathologies. Cell Insight 2, 100077
  24. Feng J, Li J, Wu L et al (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 39, 126
  25. Robey RB and Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683-4696 https://doi.org/10.1038/sj.onc.1209595
  26. Ye Y, Yu B, Wang H and Yi F (2023) Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci 10, 1242059
  27. Marsico M, Santarsiero A, Pappalardo I et al (2021) Mitochondria-mediated apoptosis of HCC cells triggered by knockdown of glutamate dehydrogenase 1: perspective for its inhibition through quercetin and permethylated anigopreissin A. Biomedicines 9, 1664
  28. Shen A, Tang C, Wang Y et al (2013) A systematic review of sorafenib in Child-Pugh A patients with unresectable hepatocellular carcinoma. J Clin Gastroenterol 47, 871-880 https://doi.org/10.1097/MCG.0b013e3182a87cfd
  29. Facciorusso A, Tartaglia N, Villani R et al (2021) Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: a systematic review and meta-analysis. Am J Transl Res 13, 2379-2387
  30. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382, 1894-1905 https://doi.org/10.1056/NEJMoa1915745
  31. Abou-Alfa GK, Lau G, Kudo M et al (2022) Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 1, EVIDoa2100070
  32. Faria RX, Freitas HR and Reis RAM (2017) P2X7 receptor large pore signaling in avian Muller glial cells. J Bioenerg Biomembr 49, 215-229
  33. Freitas HR and Reis RA (2017) Glutathione induces GABA release through P2X(7)R activation on Muller glia. Neurogenesis (Austin) 4, e1283188
  34. Freitas HR, Ferraz G, Ferreira GC et al (2016) Glutathione-induced calcium shifts in chick retinal glial cells. PLoS One 11, e0153677
  35. Kawano A, Tsukimoto M, Noguchi T et al (2012) Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages. Biochem Biophys Res Commun 419, 374-380 https://doi.org/10.1016/j.bbrc.2012.01.156
  36. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S and Inoue K (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78, 1339-1349 https://doi.org/10.1046/j.1471-4159.2001.00514.x
  37. Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M and Inoue K (2009) Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem 108, 115-125 https://doi.org/10.1111/j.1471-4159.2008.05744.x