DOI QR코드

DOI QR Code

Multifaceted roles of trained immunity in diverse pathological contexts

  • Hyo Jin Park (Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Su Min Kim (Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Un Yung Choi (Department of Microbiology, Konkuk University School of Medicine) ;
  • Lark Kyun Kim (Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine)
  • 투고 : 2024.03.20
  • 심사 : 2024.05.13
  • 발행 : 2024.10.31

초록

Trained immunity, an innate immune response characterized by enhanced cellular responsiveness, exhibits a profound memory akin to adaptive immunity. This phenomenon involves intricate metabolic and epigenetic reprogramming triggered by stimuli such as β-glucan and BCG, shaping innate immune memory. Following elucidation of the background on trained immunity, it is important to explore its multifaceted roles in various pathological contexts. In this review, we delve into the specific contributions of trained immunity in the intricate landscape of viral infections, tumorigenesis, and diverse inflammatory diseases, shedding light on its potential as a therapeutic target, and offering comprehensive understanding of its broader immunological implications.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (NRF-2023R1A2C1005804, and NRF-2022M3A9B6017424 to L.K.K. RS-2023-00245958 to U.Y.C.). Support was also provided by a grant from the MD-PhD/Medical Scientist Training Program, administered by the Korea Health Industry Development Institute (KHIDI) and funded by the Ministry of Health & Welfare of the Republic of Korea (S.M.K.).

참고문헌

  1. Netea MG, Quintin J and van der Meer JW (2011) Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355-361
  2. Lemaitre B, Reichhart JM and Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94, 14614-14619
  3. Quintin J, Saeed S, Martens JHA et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223-232
  4. de Bree LCJ, Koeken V, Joosten LAB et al (2018) Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol 39, 35-43
  5. Thysen SM, Jensen AKG, Rodrigues A et al (2019) Can earlier BCG vaccination reduce early infant mortality? Study protocol for a cluster randomised trial in Guinea-Bissau. BMJ Open 9, e025724
  6. Garly ML, Martins CL, Bale C et al (2003) BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG? Vaccine 21, 2782-2790
  7. Saeed S, Quintin J, Kerstens HH et al (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086
  8. Cheng SC, Quintin J, Cramer RA et al (2014) mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684
  9. Kalafati L, Kourtzelis I, Schulte-Schrepping J et al (2020) Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771-785 e712
  10. Hole CR, Wager CML, Castro-Lopez N et al (2019) Induction of memory-like dendritic cell responses in vivo. Nat Commun 10, 2955
  11. Kleinnijenhuis J, Quintin J, Preijers F et al (2014) BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin Immunol 155, 213-219
  12. Martinez-Gonzalez I, Matha L, Steer CA, Ghaedi M, Poon GF and Takei F (2016) Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198-208
  13. de Laval B, Maurizio J, Kandalla PK et al (2020) C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26, 657-674e658
  14. Naik S, Larsen SB, Gomez NC et al (2017) Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475-480
  15. Al B, Suen TK, Placek K and Netea MG (2023) Innate (learned) memory. J Allergy Clin Immunol 152, 551-566
  16. Kleinnijenhuis J, Quintin J, Preijers F et al (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109, 17537-17542
  17. Schrum JE, Crabtree JN, Dobbs KR et al (2018) Cutting edge: plasmodium falciparum induces trained innate immunity. J Immunol 200, 1243-1248
  18. Crisan TO, Cleophas MC, Oosting M et al (2016) Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis 75, 755-762
  19. Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG and Riksen NP (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34, 1731-1738
  20. van der Heijden C, Groh L, Keating ST et al (2020) Catecholamines induce trained immunity in monocytes in vitro and in vivo. Circ Res 127, 269-283
  21. Jentho E, Ruiz-Moreno C, Novakovic B et al (2021) Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc Natl Acad Sci U S A 118, e2102698118
  22. Tsoni SV and Brown GD (2008) Beta-glucans and dectin-1. Ann N Y Acad Sci 1143, 45-60
  23. Chen J, Gao L, Wu X et al (2023) BCG-induced trained immunity: history, mechanisms and potential applications. J Transl Med 21, 106
  24. Schnack L, Sohrabi Y, Lagache SMM et al (2019) Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Front Immunol 10, 13
  25. Bekkering S, Arts RJW, Novakovic B et al (2018) Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135-146 e139
  26. van der Heijden C, Noz MP, Joosten LAB, Netea MG, Riksen NP and Keating ST (2018) Epigenetics and trained immunity. Antioxid Redox Signal 29, 1023-1040
  27. Zhao S, Zhong Y, Fu X et al (2019) H3K4 methylation regulates lps-induced proinflammatory cytokine expression and release in macrophages. Shock 51, 401-406
  28. Chen YG, Satpathy AT and Chang HY (2017) Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18, 962-972
  29. Pombo A and Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16, 245-257
  30. Fanucchi S, Fok ET, Dalla E et al (2019) Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet 51, 138-150
  31. Moorlag S, Rodriguez-Rosales YA, Gillard J et al (2020) BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep 33, 108387
  32. Fanucchi S, Dominguez-Andres J, Joosten LAB, Netea MG and Mhlanga MM (2021) The intersection of epigenetics and metabolism in trained immunity. Immunity 54, 32-43
  33. Dominguez-Andres J, Fanucchi S, Joosten LAB, Mhlanga MM and Netea MG (2020) Advances in understanding molecular regulation of innate immune memory. Curr Opin Cell Biol 63, 68-75
  34. Mookerjee SA, Gerencser AA, Nicholls DG and Brand MD (2018) Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem 293, 12649-12652
  35. Mitroulis I, Ruppova K, Wang B et al (2018) Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147-161 e112
  36. Groh LA, Ferreira AV, Helder L et al (2021) oxLDL-induced trained immunity is dependent on mitochondrial metabolic reprogramming. Immunometabolism 3, e210025
  37. Keating ST, Groh L, van der Heijden C et al (2020) The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. Cell Rep 31, 107548
  38. Arts RJ, Novakovic B, Ter Horst R et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24, 807-819
  39. Dominguez-Andres J, Novakovic B, Li Y et al (2019) The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29, 211-220 e215
  40. Stensballe LG, Nante E, Jensen IP et al (2005) Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine 23, 1251-1257
  41. Bueno SM, Gonzalez PA, Cautivo KM et al (2008) Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci U S A 105, 20822-20827
  42. Soto JA, Galvez NMS, Rivera CA et al (2018) Recombinant BCG vaccines reduce pneumovirus-caused airway pathology by inducing protective humoral immunity. Front Immunol 9, 2875
  43. Spencer JC, Ganguly R and Waldman RH (1977) Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin. J Infect Dis 136, 171-175
  44. Ikeda S, Negishi T and Nishimura C (1985) Enhancement of non-specific resistance to viral infection by muramyldipeptide and its analogs. Antiviral Res 5, 207-215
  45. Ishihara C, Mizukoshi N, Iida J, Kato K, Yamamoto K and Azuma I (1987) Suppression of Sendai virus growth by treatment with N alpha-acetylmuramyl-L-alanyl-D-isoglutaminyl-N epsilon-stearoyl-L-lysine in mice. Vaccine 5, 295-301
  46. Mukherjee S, Subramaniam R, Chen H, Smith A, Keshava S and Shams H (2017) Boosting efferocytosis in alveolar space using BCG vaccine to protect host against influenza pneumonia. PLoS One 12, e0180143
  47. Suenaga T, Okuyama T, Yoshida I and Azuma M (1978) Effect of Mycobacterium tuberculosis BCG infection on the resistance of mice to ectromelia virus infection: participation of interferon in enhanced resistance. Infect Immun 20, 312-314
  48. Arts RJW, Moorlag S, Novakovic B et al (2018) BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89-100 e105
  49. Wang G, Li Z, Tian M et al (2023) Beta-glucan induces training immunity to promote antiviral activity by activating TBK1. Viruses 15, 1204
  50. Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y and Otazu GH (2020) Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv, 2020. 2003.2024.20042937 2020
  51. Green CM, Fanucchi S, Dominguez-Andres J et al (2020) COVID-19: a model correlating BCG vaccination to protection from mortality implicates trained immunity. medRxiv, 2020.2004.2010.20060905
  52. Hilligan KL, Namasivayam S, Clancy CS et al (2022) Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. J Exp Med 219, e20211862
  53. Kaufmann E, Khan N, Tran KA et al (2022) BCG vaccination provides protection against IAV but not SARS-CoV-2. Cell Rep 38, 110502
  54. Barton ES, White DW, Cathelyn JS et al (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326-329
  55. Izurieta RO, Macaluso M, Watts DM et al (2009) Anamnestic immune response to dengue and decreased severity of yellow Fever. J Glob Infect Dis 1, 111-116
  56. Debisarun PA, Gossling KL, Bulut O et al (2021) Induction of trained immunity by influenza vaccination - impact on COVID-19. PLoS Pathog 17, e1009928
  57. Cheong JG, Ravishankar A, Sharma S et al (2023) Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 186, 3882-3902 e3824
  58. Pandori WJ, Padgett LE, Alimadadi A et al (2022) Single-cell immune profiling reveals long-term changes in myeloid cells and identifies a novel subset of CD9(+) monocytes associated with COVID-19 hospitalization. J Leukoc Biol 112, 1053-1063
  59. Chen C, Man N, Liu F et al (2022) Epigenetic and transcriptional regulation of innate immunity in cancer. Cancer Res 82, 2047-2056
  60. Buffen K, Oosting M, Quintin J et al (2014) Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog 10, e1004485
  61. Geller AE, Shrestha R, Woeste MR et al (2022) The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat Commun 13, 759
  62. Abdelghani KB, Nacef L, Miladi S et al (2021) Reactive arthritis following bacillus calmette-guerin therapy for bladder cancer: a systematic literature review. Curr Rheumatol Rep 23, 39
  63. van Puffelen JH, Novakovic B, van Emst L et al (2023) Intravesical BCG in patients with non-muscle invasive bladder cancer induces trained immunity and decreases respiratory infections. J Immunother Cancer 11, e005518
  64. Ding C, Shrestha R, Zhu X et al (2023) Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat Immunol 24, 239-254
  65. Yi M, Li T, Niu M et al (2023) Exploiting innate immunity for cancer immunotherapy. Mol Cancer 22, 187
  66. Lerias JR, de Sousa E, Paraschoudi G et al (2019) Trained immunity for personalized cancer immunotherapy: current knowledge and future opportunities. Front Microbiol 10, 2924
  67. Singh AK, Praharaj M, Lombardo KA et al (2022) Reengineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat Commun 13, 878
  68. Chen Z, Yong T, Wei Z et al (2023) Engineered probiotic-based personalized cancer vaccine potentiates antitumor immunity through initiating trained immunity. Adv Sci (Weinh), e2305081
  69. Priem B, van Leent MMT, Teunissen AJP et al (2020) Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786-801 e719
  70. Rodriguez Murua S, Farez MF and Quintana FJ (2022) The immune response in multiple sclerosis. Annu Rev Pathol 17, 121-139
  71. Sato F, Nakamura Y, Katsuki A et al (2022) Curdlan, a microbial -glucan, has contrasting effects on autoimmune and viral models of multiple sclerosis. Front Cell Infect Microbiol 12, 805302
  72. Matsuzaki G, Teruya N, Kiyohara Kohama H et al (2021) Mycobacterium bovis BCG-mediated suppression of Th17 response in mouse experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 43, 203-211
  73. Quinn SM, Cunningham K, Raverdeau M et al (2019) Anti-inflammatory trained immunity mediated by helminth products attenuates the induction of T cell-mediated autoimmune disease. Front Immunol 10, 1109
  74. Kaul A, Gordon C, Crow MK et al (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 2, 16039
  75. Idborg H and Oke V (2021) Cytokines as biomarkers in systemic lupus erythematosus: value for diagnosis and drug therapy. Int J Mol Sci 22, 11327
  76. Funes SC, Rios M, Fernandez-Fierro A, Di Genaro MS and Kalergis AM (2022) Trained immunity contribution to autoimmune and inflammatory disorders. Front Immunol 13, 868343
  77. Fagone P, Mangano K, Mammana S et al (2014) Acceleration of SLE-like syndrome development in NZBxNZW F1 mice by beta-glucan. Lupus 23, 407-411
  78. Yoshitomi H, Sakaguchi N, Kobayashi K et al (2005) A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 201, 949-960
  79. Hida S, Miura NN, Adachi Y and Ohno N (2005) Effect of Candida albicans cell wall glucan as adjuvant for induction of autoimmune arthritis in mice. J Autoimmun 25, 93-101
  80. Bekkering S, Stiekema LCA, Bernelot Moens S et al (2019) Treatment with statins does not revert trained immunity in patients with familial hypercholesterolemia. Cell Metab 30, 1-2
  81. Yin Y, Choi SC, Xu Z et al (2015) Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 7, 274ra218
  82. Lee YZ, Guo HC, Zhao GH et al (2020) Tylophorine-based compounds are therapeutic in rheumatoid arthritis by targeting the caprin-1 ribonucleoprotein complex and inhibiting expression of associated c-Myc and HIF-1α. Pharmacol Res 152, 104581
  83. Agache I, Cojanu C, Laculiceanu A and Rogozea L (2020) Genetics and epigenetics of allergy. Curr Opin Allergy Clin Immunol 20, 223-232
  84. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H and Sly PD (2015) Asthma. Nat Rev Dis Primers 1, 15025
  85. Lauzon-Joset JF, Mincham KT, Scott NM et al (2021) Protection against neonatal respiratory viral infection via maternal treatment during pregnancy with the benign immune training agent OM-85. Clin Transl Immunology 10, e1303
  86. Troy NM, Strickland D, Serralha M et al (2022) Protection against severe infant lower respiratory tract infections by immune training: mechanistic studies. J Allergy Clin Immunol 150, 93-103
  87. Machiels B, Dourcy M, Xiao X et al (2017) A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat Immunol 18, 1310-1320
  88. Steer CA, Matha L, Shim H and Takei F (2020) Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight 5, e135961
  89. Tulic MK, Hodder M, Forsberg A et al (2011) Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J Allergy Clin Immunol 127, 470-478 e471
  90. Zhang Y, Collier F, Naselli G et al (2016) Cord blood monocyte-derived inflammatory cytokines suppress IL-2 and induce nonclassic "T(H)2-type" immunity associated with development of food allergy. Sci Transl Med 8, 321ra328
  91. Neeland MR, Koplin JJ, Dang TD et al (2018) Early life innate immune signatures of persistent food allergy. J Allergy Clin Immunol 142, 857-864 e853
  92. Pfaar O, Creticos PS, Kleine-Tebbe J, Canonica GW, Palomares O and Schulke S (2021) One hundred ten years of allergen immunotherapy: a broad look into the future. J Allergy Clin Immunol Pract 9, 1791-1803
  93. Eljaszewicz A, Ruchti F, Radzikowska U et al (2021) Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy. J Allergy Clin Immunol 147, 1865-1877
  94. Golebski K, Layhadi JA, Sahiner U et al (2021) Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 54, 291-307 e297