DOI QR코드

DOI QR Code

3D 프린팅을 이용해 간접-직접법으로 제작한 단일 임플란트 임시관의 파절강도에 대한 쉘(shell) 두께의 영향

Effect of shell thickness on fracture strength of single implant provisional crowns fabricated by indirect-direct technique using 3D printing

  • 황선우 (원광대학교 치과대학 치과보철학교실) ;
  • 오상천 (원광대학교 치과대학 치과보철학교실)
  • Seonwoo Hwang (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Sang-Chun Oh (Department of Prosthodontics, School of Dentistry, Wonkwang University)
  • 투고 : 2024.06.10
  • 심사 : 2024.07.29
  • 발행 : 2024.10.31

초록

목적: 본 연구는 간접-직접법으로 임시관 제작 시, 외관, 즉 쉘(shell)의 두께가 파절강도에 미치는 영향을 평가하고자 하였다. 재료 및 방법: 상악 제1대구치 임플란트 지대주 위에 임시관 적용을 가정하였다. 임시관의 파절강도 측정을 위해 임플란트 기성 지대주를 복제하여 티타늄 금속 다이를 밀링 제작하였고, CAD 프로그램 상에서 임시관을 디자인하고 내면에 각기 다른 첨상 공간이 부여되는 0.5 mm, 1.0 mm, 1.5 mm의 서로 다른 두께의 쉘을 광경화성 액상 레진을 이용하여 3D 프린팅한 후 PMMA 레진으로 첨상하여 간접-직접법으로 제작한 임시관 시편을 0.5군, 1.0군, 1.5군으로 나누어 10개씩 준비하였다. 파절강도 측정을 위해 만능시험기를 사용하여 1.0 mm/min crosshead speed로 시편의 교합면 중심와에서 수직으로 압축 하중을 가하였으며, 파절 시 최대 하중 값(N)을 기록하였다. 실험군 간 파절강도를 비교하기 위해 일원배치 분산분석 후 사후검정으로 Tukey test를 실시하였다 (α = .05). 결과: 파절강도는 1.5군 (1504.5 ± 141.30 N), 1.0군 (1420.2 ± 182.05 N), 0.5군 (1083.1 ± 178.90 N)순으로 나타났다. 1.5군은 1.0군과 유의한 차이가 없었으나 (P > .05), 0.5군과 유의한 차이가 있었고 (P < .001), 1.0군은 0.5군과 유의한 차이가 있었다 (P < .001). 결론: 간접-직접법으로 제작한 임시관의 파절강도는 쉘의 두께에 따라 유의한 차이가 있었다. 간접-직접법으로 임시관 제작 시 쉘의 두께가 0.5 mm인 경우 쉘의 두께가 1.0 mm, 1.5 mm일 때보다 유의하게 낮은 파절강도를 보였으며, 이는 간접-직접법으로 임시관 제작 시 쉘이 너무 얇아지는 것을 경계해야 함을 의미한다.

Purpose. This study aimed to evaluate the effect of shell thickness on the fracture strength of provisional crowns fabricated by indirect-direct technique. Materials and methods. The study simulated the application of a provisional crown on a maxillary first molar implant abutment. A titanium metal die was milled by replicating a ready-made implant abutment. Using CAD software, shells for provisional crown was designed with varying thicknesses of 0.5 mm, 1.0 mm and 1.5 mm with different internal spaces for relining. These shells were 3D printed using photosensitive liquid resin and relined with PMMA resin to fabricate provisional crown specimens using indirect-direct technique. Ten specimens per each group were prepared. Fracture strength was measured by applying compressive loads vertically to the occlusal center of the specimens at a crosshead speed of 1.0 mm/min using a universal testing machine, and the maximum load value (N) at fracture was recorded. To compare the fracture strength between experimental groups, a one-way ANOVA followed by Tukey's post hoc test was conducted (α=.05). Results. The fracture strength was observed in the following order: Group 1.5 (1504.5 ± 141.30 N), Group 1.0 (1420.2 ± 182.05 N), and Group 0.5 (1083.1 ± 178.90 N). Group 1.5 was not significantly different from group 1.0, but was significantly different from group 0.5, and group 1.0 was also significantly different from group 0.5. Conclusion. The fracture strength of provisional crowns fabricated by the indirect-direct techniques were significantly different depending on the thickness of the shell. The fracture strength of the indirect-direct method was significantly lower when the shell thickness was 0.5 mm compared to 1.0 mm and 1.5 mm. This finding indicates that the shell should not be too thin when fabricating provisional crowns using the indirect-direct technique.

키워드

참고문헌

  1. Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Brackett SE. Fundamentals of fixed prosthodontics. 3rd ed., Quintessence Publishing Company; Chicago, IL, USA; 1997. p. 225-7. 
  2. Burns DR, Beck DA, Nelson SK; Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97. 
  3. Mendes JM, Botelho PC, Mendes J, Barreiros P, Aroso C, Silva AS. Comparison of fracture strengths of three provisional prosthodontic CAD/CAM materials: laboratory fatigue tests. Appl Sci 2021;11:9589. 
  4. Regish KM, Sharma D, Prithviraj DR. Techniques of fabrication of provisional restoration: an overview. Int J Dent 2011;2011:134659. 
  5. Cho WT, Choi JW. Comparison analysis of fracture load and flexural strength of provisional restorative resins fabricated by different methods. J Korean Acad Prosthodont 2019;57:225-31. 
  6. Fuster-Torres MA, Albalat-Estela S, Alcaniz-Raya M, Penarrocha-Diago M. CAD/CAM dental systems in implant dentistry: update. Med Oral Patol Oral Cir Bucal 2009;14:E141-5. 
  7. Dimitrov D, Schreve K, de Beer N. Advances in three dimensional printing - state of the art and future perspectives. Rapid Prototyp J 2006;12:136-47. 
  8. Yoon GW, Park EJ. Fracture strength of six-unit anterior fixed provisional restorations fabricated using various dental CAD/CAM systems. Int J Prosthodont 2024;37:49-54. 
  9. Moon W, Kim S, Lim BS, Park YS, Kim RJ, Chung SH. Dimensional accuracy evaluation of temporary dental restorations with different 3D printing systems. Materials (Basel) 2021;14:1487. 
  10. Schweiger J, Edelhoff D, Guth JF. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J Clin Med 2021;10:2010. 
  11. Palavicini J, Quin SL, Zakkour W, Zakkour K, Manafi Varkiani S, Xu X, Lawson NC, Nejat AH. Bond strength of reline materials to 3D-printed provisional crown resins. Polymers (Basel) 2023;15:3745. 
  12. Zinner ID, Trachtenberg DI, Miller RD. Provisional restorations in fixed partial prosthodontics. Dent Clin North Am 1989;33:355-77. 
  13. Berli C, Thieringer FM, Sharma N, Muller JA, Dedem P, Fischer J, Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent 2020;124:780-6. 
  14. Suralik KM, Sun J, Chen CY, Lee SJ. Effect of fabrication method on fracture strength of provisional implant-supported fixed dental prostheses. Prosthesis 2020;2:325-32. 
  15. Reymus M, Fabritius R, Kessler A, Hickel R, Edelhoff D, Stawarczyk B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging-an in vitro study. Clin Oral Investig 2020;24:701-10. 
  16. Abdullah AO, Pollington S, Liu Y. Comparison between direct chairside and digitally fabricated temporary crowns. Dent Mater J 2018;37:957-63. 
  17. Galli F, Deflorian M, Testori T. Simplified protocol for relining provisional prosthesis on natural abutments: a technical note. Int J Periodontics Restorative Dent 2018;38:e25-8. 
  18. Peng CC, Chung KH, Yau HT, Ramos V Jr. Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods. J Prosthet Dent 2020;123:514-22. 
  19. Waltimo A, Kononen M. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand J Dent Res 1993;101:171-5. 
  20. Waltimo A, Kononen M. Maximal bite force and its association with signs and symptoms of craniomandibular disorders in young Finnish non-patients. Acta Odontol Scand 1995;53:254-8. 
  21. Libecki W, Elsayed A, Freitag-Wolf S, Kern M. Reducing the effect of polymerization shrinkage of temporary fixed dental prostheses by using different materials and fabrication techniques. Dent Mater 2016;32:1464-71. 
  22. Rosenstiel SF, Land MF. Contemporary fixed prosthodontics (E-Book). Elsevier Health Sciences; 2015. 
  23. Sadid-Zadeh R, Zirkel C, Makwoka S, Li R. Fracture strength of interim CAD/CAM and conventional partial fixed dental prostheses. J Prosthodont 2021;30:720-4. 
  24. Donker VJJ, Janss PEA, Pol CWP, Raghoebar GM, Vissink A, Meijer HJA. Mechanical performance of patient-specific prefabricated temporary shell versus laboratory-fabricated CAD/CAM provisional implant-supported single-tooth restorations: A laboratory study. Clin Oral Implants Res 2024 Jun 5. 
  25. Ibrahim A, El Shehawy D, El-Naggar G. Fracture resistance of interim restoration constructed by 3D printing versus CAD/CAM technique (In vitro study). Ain Shams Dent J 2020;23:13-20. 
  26. Reeponmaha T, Angwaravong O, Angwarawong T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J Adv Prosthodont 2020;12:218-24. 
  27. Abad-Coronel C, Carrera E, Mena Cordova N, Fajardo JI, Aliaga P. Comparative analysis of fracture resistance between CAD/CAM materials for interim fixed prosthesis. Materials (Basel) 2021;14:7791. 
  28. Henderson JY, Korioth TVP, Tantbirojn D, Versluis A. Failure load of milled, 3D-printed, and conventional chairside-dispensed interim 3-unit fixed dental prostheses. J Prosthet Dent 2022;127:275.e1-7. 
  29. Martin-Ortega N, Sallorenzo A, Casajus J, Cervera A, Revilla-Leon M, Gomez-Polo M. Fracture resistance of additive manufactured and milled implant-supported interim crowns. J Prosthet Dent 2022;127:267-74. 
  30. Mayer J, Stawarczyk B, Vogt K, Hickel R, Edelhoff D, Reymus M. Influence of cleaning methods after 3D printing on two-body wear and fracture load of resin-based temporary crown and bridge material. Clin Oral Investig 2021;25:5987-96. 
  31. Matsumura H, Leinfelder KF. Three-body wear of four types of light-activated composite resin veneering materials. Quintessence Int 1994;25:425-30. 
  32. Karaokutan I, Sayin G, Kara O. In vitro study of fracture strength of provisional crown materials. J Adv Prosthodont 2015;7:27-31. 
  33. Naveen KS, Singh JP, Viswambaran M, Dhiman RK. Evaluation of flexural strength of resin interim restorations impregnated with various types of silane treated and untreated glass fibres. Med J Armed Forces India 2015;71(Suppl 2):S293-8. 
  34. Park SM, Park JM, Kim SK, Heo SJ, Koak JY. Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses. Materials (Basel) 2020;13:3970. 
  35. Heboyan AG, Movsisyan NM, Khachatryan VA. Provisional restorations in restorative dentistry. World Science 2019; 3:11-7. 
  36. Sallustio FW, Waskewicz GA, Billy EJ. The effect of venting on the strength of dicor and hi-ceram ceramic crowns. Int J Prosthodont 1992;5:463-8.