DOI QR코드

DOI QR Code

캐빈 디스플레이 시스템을 위한 원격 제어 소프트웨어의 설계 및 구현

Design and Implementation of Remote Control Software for Cabin Display System

  • 신재권 (LIG Nex1 항공연구소) ;
  • 최지환 (LIG Nex1 항공연구소) ;
  • 최낙민 (LIG Nex1 항공연구소) ;
  • 김정열 (LIG Nex1 항공연구소) ;
  • 김준형 (LIG Nex1 항공연구소)
  • Jae-kwon Shin (Aeronautical research institute of LIG Nex1) ;
  • Ji-hwan Choi (Aeronautical research institute of LIG Nex1) ;
  • Nak-min Choi (Aeronautical research institute of LIG Nex1) ;
  • Jeong-yeol Kim (Aeronautical research institute of LIG Nex1) ;
  • Jun-hyoung Kim (Aeronautical research institute of LIG Nex1)
  • 투고 : 2024.10.07
  • 심사 : 2024.10.29
  • 발행 : 2024.10.31

초록

최근 항공 산업 경쟁이 심화함에 따라 항공기 인테리어 산업도 첨단 IT (information technology) 요소를 접목하는 등 빠르게 발전하고 있다. 국내에서는 보잉사와 협력하여 항공기용 디스플레이 시스템인 CDS (cabin display system)를 개발 중이며, 본 논문에서는 CDS의 원격 제어 소프트웨어인 CDS RCS (cabin display system remote control software)의 설계 및 구현의 내용을 다룬다. CDS RCS 는 ARINC-615A 표준을 응용하여 자체 개발한 항공기용 데이터로드 프로세스와, MQTT (message queuing telemetry transport) 프로토콜을 적용하여 개발하였다. 또한 CDS RCS는 기존의 CDS 제어 소프트웨어와 달리 MQTT client 형태로 설계되어 다른 MQTT client 장치들과 독립적으로 운용할 수 있다는 장점이 있으며, 개인 단말기에 쉽게 설치할 수 있는 안드로이드 기반으로 개발되어 승무원들의 편의성이 크게 향상될 것으로 기대된다.

In recent years, the aircraft interior industry has been rapidly evolving, incorporating advanced information technology (IT) elements as competition in the aviation industry intensifies. In Korea, a display system for aircraft, called cabin display system (CDS), is being developed in collaboration with Boeing. This paper discusses the design and implementation of cabin display system remote control software (CDS RCS), a remote control software for the CDS. CDS RCS was developed by applying the aircraft data load process developed in-house using the ARINC-615A standard, and the communication protocol between devices applies the MQTT protocol. Unlike existing CDS control software, CDS RCS is designed as an MQTT client and can operate independently of other MQTT clients. It is also developed for android-based devices, which can be easily installed on personal terminals, and is expected to greatly enhance the convenience of flight attendants.

키워드

과제정보

본 논문은 산업통상자원부 재원으로 한국 산업 기술 평가 관리원(KEIT)의 지원을 받아 수행된 연구 결과입니다. [사업명: 스마트 캐빈 기술개발사업, 과제명: 항공기용 대형 flexible OLED 디스플레이 시스템 개발/과제고유번호: 20011845]

참고문헌

  1. G. Torkashvand, Optimization of cabin design for enhanced passenger experience, Florida Institute of Technology ProQuest Dissertations Publishing, 2019.28216828, 2019.
  2. A. O. Moraes, and F. R. D. A. S. Ciaccia, "Smart cabin design concept for regional aircraft: technologies, applications & architecture," Journal of Aerospace technology and Management 15, Aug. 2023. DOI: https://doi.org/10.1590/jatm.v15.1310.
  3. B. K. Shin, H. S. Ji, and J. W. Han, "A plan for obtaining technology development certification for the application of a large flexible OLED display system and a smart divider in a single-aisle medium-sized aircraft cabin," in KSAS 2020 Spring Conference, pp. 347-348, Jul. 2020. Retrieved from https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE10442160.
  4. D. H. Kim, J. Y. Kim, and J. H. Kim, "Design and test method of smart cabin system for airplane," in KSAS 2021 Fall Conference, pp. 447-448, Nov. 2021. Retrieved from https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE11031363&googleIPSandBox=false&mark=0&minRead=5&ipRange=false&b2cLoginYN=false&icstClss=050000&isPDFSizeAllowed=true&accessgl=Y&language=ko_KR&hasTopBanner=true.
  5. J. K. Shin, J. H. Choi, N. M. Choi, J. H. Kim, and J. Y. Kim, "Multi-division video player design and implementation with standard interface for aircraft in embedded environments," Journal of The Korea Contents Association, Vol. 22, No. 11, pp. 80-91, Oct. 2022. DOI: https://doi.org/10.5392/JKCA.2022.22.11.080.
  6. J. K. Shin, J. H. Choi, N. M. Choi, and J. H. Kim. "Aircraft mounted media player remote control software design," in KSAS 2023 Spring Conference, pp. 1344-1345, 2023. Retrieved from https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE11439703&googleIPSandBox=false&mark=0&minRead=5&ipRange=false&b2cLoginYN=false&icstClss=050000&isPDFSizeAllowed=true&accessgl=Y&language=ko_KR&hasTopBanner=true.
  7. J. H. Choi, N. M. Choi, and J. K. Shin, "Data load process of large-sized media for avionics using FTP and JSON," Journal of Advanced Navigation Technology, Vol. 27, No. 5, pp.610-620, Oct. 2023. DOI: https://doi.org/10.12673/jant.2023.27.5.610.
  8. N. Naik, "Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP," in 2017 IEEE International Systems Engineering Symposium (ISSE), pp. 1-7, Oct. 2017. DOI: https://doi.org/10.1109/SysEng.2017.8088251.
  9. ISO/IEC. Information technology message queuing telemetry Transport (MQTT) v3.1.1. [Internet], 20922:2016, Available: https://www.iso.org/standard/69466.html.
  10. U. Hunkeler, H. L. Truong, and A. S. Clark, "MQTT (2008) MQTT-S - A publish / subscribe protocol for wireless sensor networks," in 3rd International Conference on Communication Systems Software and Middleware and Workshops (CMOSWARE '08), Bangalore: India, pp. 791-798, Jan. 2008. DOI: 10.1109/COMSWA.2008.4554519.
  11. OASIS. MQTT Version 5.0 [Internet], Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
  12. R. Rashmi, R. Srinidhi, S. Shriharsha, K. Ashwani, and R. Byra, "ARINC 615A and 665-3 based data loader for aircrafts," International Journal of Engineering Trends and Technology, Vol. 37, No. 5 pp. 260-264, 2016. DOI: 10.14445/22315381/IJETT-V37P244.
  13. Airlines Electronic Engineering Committee, Loadable software standards, ARINC report 665-3, Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, Maryland 21401-7435, 2005.