과제정보
이 논문은 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원-지역지능화혁신인재양성사업의 지원을 받아 수행된 연구임(IITP-2024-RS-2024-00439292)
참고문헌
- S. Deane, N. P. Avdelidis, C. Ibarra-Castanedo, H. Zhang, H. Yazdani Nezhad, A. A. Williamson, T. Mackley, X. Maldague, A. Tsourdos, and P. Nooralishahi, "Comparison of cooled and uncooled IR sensors by means of signal-to-noise ratio for NDT diagnostics of aerospace grade composites," Sensors, Vol. 20, No. 12, p. 3381, Jun. 2020. DOI: https://doi.org/10.3390/s20123381.
- J. Zhang, S. L. Jaker, J. S. Reid, S. D. Miller, J. Solbrig, and T. D. Toth, "Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the visible infrared imager radiometer suite day/night band," Atmospheric Measurement Techniques, Vol. 12, No. 6, pp. 3209-3222, Jun. 2019. DOI: https://doi.org/10.5194/amt-12-3209-2019.
- G. R. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, Mumbai, India: Shroff Publishers & Distributors, 2008.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Oct. 2015. DOI: https://doi.org/10.1007/978-3-319-24574-4_28.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, ..., Y. Bengio, "Generative adversarial networks," Communications of the ACM, Vol. 63, No. 11, pp. 139-144, Oct. 2020. DOI: https://doi.org/10.1145/3422622.
- M. Tassano, J. Delon, and T. Veit, "FastDVDnet: Towards real-time deep video denoising without flow estimation," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: WA, 2020. DOI: https://doi.org/10.1109/cvpr42600.2020.00143.
- L. Eversberg and J. Lambrecht, "Combining synthetic images and deep active learning: Data-efficient training of an industrial object detection model," Journal of Imaging Science and Technology, Vol. 10, No. 1, Jan. 2024. DOI: https://doi.org/10.3390/jimaging10010016.
- J. W. Anderson, M. Ziolkowski, K. Kennedy, and A. W. Apon, "Synthetic image data for deep learning," arXiv [cs.CV], Dec. 2022. DOI: https://doi.org/10.48550/arXiv.2212.06232.
- S. W. Zamir, A. Arora, S. Khan, and M. Hayat, "Cycleisp: Real image restoration via improved data synthesis," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2696-2705, 2020. arXiv: https://ui.adsabs.harvard.edu/abs/2020arXiv200307761W/abstract.
- S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, …, M. Levoy, "Burst photography for high dynamic range and low-light imaging on mobile cameras," ACM Transactions on Graphics, Vol. 35, No. 6, pp. 1-12, Nov. 2016. DOI: https://doi.org/10.1145/2980179.2980254.
- Y.-I. Pyo, R.-H. Park, and S. Chang, "Noise reduction in high-ISO images using 3-D collaborative filtering and structure extraction from residual blocks," IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, pp. 687-695, May 2011. DOI: https://doi.org/10.1109/tce.2011.5955209.
- T. Rabie, "Adaptive hybrid mean and median filtering of high-ISO long-exposure sensor noise for digital photography," Journal of Electronic Imaging, Vol. 13, No. 2, p. 264, Apr. 2004. DOI: https://doi.org/10.1117/1.1668279.
- J. M. B. Morillas, D. M. Gonzalez, and G. R. Gozalo, "A review of the measurement procedure of the ISO 1996 standard. relationship with the European noise directive," Science of the Total Environment, Vol. 565, pp. 595-606, Sep. 2016. DOI: https://doi.org/10.1016/j.scitotenv.2016.04.207.
- U. Sara, M. Akter, and M. S. Uddin, "Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study," Journal of Computer and Communications, Vol. 7, No. 3, pp. 8-18, 2019. DOI: https://www.scirp.org/journal/paperinformation.aspx?paperid=90911.
- A. Hore and D. Ziou, "Image Quality Metrics: PSNR vs. SSIM," in International Conference on Pattern Recognition, Istanbul: Turkiye, 2010, pp. 2366-2369. DOI: https://doi.org/10.1109/icpr.2010.579.