DOI QR코드

DOI QR Code

저추력 추진기를 활용한 초소형위성체계 배치형상 획득을 위한 제어 방법론

Control Methodology for Acquiring Small Satellite Constellation Configurations Using Low-Thrust Propulsion

  • 김하은 (위성체계연구소, LIG Nex1(주)) ;
  • 김상일 (세종대학교 우주항공시스템공학부) ;
  • 이성섭 (세종대학교 우주항공시스템공학부)
  • Ha-Eun Kim (Satellite Research Center, LIG Nex1, Co., Ltd.) ;
  • Sang-Il Kim (Aerospace Systems Engineering, Sejong University) ;
  • Soung-Sub Lee (Aerospace Systems Engineering, Sejong University)
  • 투고 : 2024.08.26
  • 심사 : 2024.10.29
  • 발행 : 2024.10.31

초록

현재 우리 군은 북한의 위협뿐만 아니라 다양한 전방위 위협에 신속하게 대응할 수 있는 지휘 통제 체계를 구축하기 위해 초소형위성체계 사업을 추진하고 있다. 본 논문에서는 저추력의 전기추진시스템인 홀추력기를 사용하여 초소형 군집위성 배치 형상을 획득하기 위한 비선형 제어기법을 제시한다. 제어기법은 일반적인 리야프노프(Lyapunov)의 제어 이론의 적용과 전기추진기의 on-off 제어를 위한 분석적 해법에 의해 구해지며 궤도 6요소 중 장반축만을 제어하여 위성군의 궤도 형상을 효과적으로 배치할 수 있는 기법이다. 본 연구에서 개발된 제어기법은 초소형위성체계에 적용하기위해 안정성을 검증하고 결과를 분석한다.

Currently, the Korean military is promoting a small satellite system project to establish a command and control system that can quickly respond to various threats from all directions, not only from North Korea. In this paper, we present a nonlinear control law to acquire the geometry of a small cluster satellite deployment using a low-thrust electric propulsion system, the Hall thruster. The control law is obtained by applying the general Lyapunov's control theory and analytical solution for the on-off control of the electric thruster, and it is a technique that can effectively deploy the orbital configuration of the satellite constellation by controlling only the semi-major axis of the six elements of the orbit. In this study, the stability of the developed control law is verified and the results are analyzed for application to a very small satellite system.

키워드

과제정보

본 연구는 2023년도 K-모델 임무성능분석도구 과제의 일환으로 수행된 연구로서, 관계부처에 감사드립니다.

참고문헌

  1. S. S. Lee, J. H. Son and Y. B. Song ,"Analysis of satellite orbit elements and study of constellation methods for micro-satellite system operation," The Journal of Korea Navigation Institute, Vol. 27, No. 4, 2023. DOI: https://doi.org/10.12673/jant.2023.27.4.337.
  2. J. G. Walker, "Satellite patterns for continuous multiple whole-earth coverage," Maritime and Aeronautical Satellite Communication and Navigation, IEEE Conference Publications, Vol. 160, pp. 119-122, 1978. Retrieved from https://api.semanticscholar.org/CorpusID:129591707.
  3. S. Cornara, T.W. Beech, M. Bello-Mora and G. Janin, "Satellite constellation mission analysis and design," Acta Astronaut, Vol. 48, pp. 681-691, 2001. DOI: https://doi.org/10.1016/S0094-5765(01)00016-9.
  4. S. D. Vtipil and B. Newman, "Determining an earth observation repeat ground track orbit for an optimization methodology," Journal of Spacecraft Rocket, Vol. 49, No. 1, 2012. DOI: https://doi.org/10.2514/1.A32038.
  5. T. Li, J. Xiang, Z. Wang and Y. Zhang, "Circular revisit orbits design for responsive mission over a single target," Acta Astronaut, Vol. 127, pp. 219-225 2016. DOI: https://doi.org/10.1016/j.actaastro.2016.05.037.
  6. S. S. Lee, "Explicit mathematical formulation and coverage consistency of satellite constellation designs for repeating ground track orbits," IEEE Transactions on Aerospace and Electronic Systems, Vol. 60, pp. 1102 - 1112, 2024. DOI: https://doi.org/10.1109/TAES.2023.3333287
  7. F. Y. Hadaegh, B. Acikmese, D. S. Bayard, G. Singh, M. Mandic, S.-J. Chung, and D. Morgan, "Guidance and control of formation flying spacecraft: from two to thousands," in Adventures on the Interface of Mechanics and Control, Tech Science Press, pp. 327-371, 2012. DOI: https://doi.org/10.1007/978-0-387-85774-9_2.
  8. D. Morgan, and S. J. Chung, "Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations," Journal of Guidance, Control and Dynamics, Vol. 35, No. 5, 2012, pp. 1492-1507. DOI: https://doi.org/10.2514/1.55705.
  9. F. Y. Hadaegh, S.-J Chung, and H. M. Manohara, "On development of 100-Gram-Class spacecraft for swarm applications," IEEE Systems Journal, Vol. 10, No. 2, pp. 673-684, 2016. DOI: https://doi.org/10.1109/JSYST.2014.2327972.
  10. H. Schaub, and K. T. Alfriend, "J2 invariant relative orbits for spacecraft formations," Celestial Mechanics and Dynamical Astronomy, 79, pp. 77-95, 2001. DOI: https://doi.org/10.1023/A:1011161811472.
  11. H. Schaub, "Impulsive feedback control to establish specific mean orbit elements of spacecraft formations," Journal of Guidance, Control and Dynamics, Vol. 24, No. 4, 2001, pp. 739-745. DOI: https://doi.org/10.2514/2.4774.
  12. I. Levchenko, et al, "Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers," Applied Physics Reviews, Vol. 5, 2018. DOI: https://doi.org/10.1063/1.5007734.
  13. C. N. McGrath and M. Macdonald, "General perturbation method for satellite constellation reconfiguration using low-thrust maneuvers," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 8, 2019. DOI: https://doi.org/ 10.2514/1.G003739.
  14. Z. Costantinos, "Trajectory control and optimization for responsive spacecraft," Theses and Dissertations, Vol. 1074, 2012. Retrieved from https://scholar.afit.edu/etd/1074 1074