DOI QR코드

DOI QR Code

Factors Influencing Supercomputing Resource Selection with PCA

  • Hyungwook Shim (Division of National Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Myungju Ko (Division of National Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Sunyoung Hwang (Division of National Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Jaegyoon Hahm (Division of National Supercomputing Center, Korea Institute of Science and Technology Information)
  • 투고 : 2024.02.21
  • 심사 : 2024.07.04
  • 발행 : 2024.04.30

초록

This paper analyzes the factors influencing the selection of supercomputing resources. Using the results of a survey targeting supercomputing resources in the public sector, a resource selection model was presented through logistic regression and principal component analysis methods. As a result of the analysis, it was confirmed that affiliation, purpose of use, size of research funding, possession of a supercomputer, and whether specialized services are needed have a significant impact on resource selection. In the future, we expect that the results of this study will be used in various ways to manage demand for supercomputing resources.

키워드

과제정보

This research was supported by the Korea Institute of Science and Technology Information (KISTI).(No. K24L2M1C3).

참고문헌

  1. Amron, M.T., Ibrahim, R., Bakar, N.A. A., Chuprat, S. (2019). Determining factors influencing the acceptance of cloud computing implementation. Procedia Computer Science, 161, 1055-1063. 
  2. Arora, R. (2021). Toward Efficient Resource Utilization of a GPU-Accelerated AI Supercomputer (Doctoral dissertation, Northeastern University). 
  3. Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. 
  4. Lin, B., Benjamin, N.I. (2017). Influencing factors on carbon emissions in China transport industry. A new evidence from quantile regression analysis. Journal of cleaner production, 150, 175-187. 
  5. Liu, R.X., Kuang, J., Gong, Q., Hou, X.L. (2003). Principal component regression analysis with SPSS. Computer methods and programs in biomedicine, 71(2), 141-147. 
  6. Mansfield, E.R., Webster, J.T., Gunst, R.F. (1977). An analytic variable selection technique for principal component regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 26(1), 34-40. 
  7. Rozell, E.J., Gardner III, W.L. (1999). Computer-related success and failure: a longitudinal field study of the factors influencing computer-related performance. Computers in Human behavior, 15(1), 1-10. 
  8. Shankar, S., Reuther, A. (2022, September). Trends in energy estimates for computing in ai/machine learning accelerators, supercomputers, and compute-intensive applications. In 2022 IEEE High Performance Extreme Computing Conference (HPEC), 1-8. 
  9. Shim, H., Hahm, J. (2023). Preferences for Supercomputer Resources Using the Logit Model. Journal of information and communication convergence engineering, 21(4), 261-267. 
  10. Shim, H., Hahm, J. (2023). A study on demand management plans for National Supercomputer resources. Technology in Society, 75, 102376. 
  11. Sisman, S., Aydinoglu, A.C. (2022). A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul. Land Use Policy, 119, 106183. 
  12. Souza, J., Silva, A., de Brito, J., Bauer, E. (2018). Analysis of the influencing factors of external wall ceramic claddings' service life using regression techniques. Engineering Failure Analysis, 83, 141-155. 
  13. Wen, J., Wei, X., He, T., Zhang, S. (2020). Regression Analysis on the Influencing Factors of the Acceptance of Online Education Platform among College Students. Ingenierie des Systemes d'Information, 25(5).