Acknowledgement
This research was supported by the Korea Institute of Science and Technology Information (KISTI).(No. K24L2M1C3).
References
- Amron, M.T., Ibrahim, R., Bakar, N.A. A., Chuprat, S. (2019). Determining factors influencing the acceptance of cloud computing implementation. Procedia Computer Science, 161, 1055-1063.
- Arora, R. (2021). Toward Efficient Resource Utilization of a GPU-Accelerated AI Supercomputer (Doctoral dissertation, Northeastern University).
- Gill, S.S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514.
- Lin, B., Benjamin, N.I. (2017). Influencing factors on carbon emissions in China transport industry. A new evidence from quantile regression analysis. Journal of cleaner production, 150, 175-187.
- Liu, R.X., Kuang, J., Gong, Q., Hou, X.L. (2003). Principal component regression analysis with SPSS. Computer methods and programs in biomedicine, 71(2), 141-147.
- Mansfield, E.R., Webster, J.T., Gunst, R.F. (1977). An analytic variable selection technique for principal component regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 26(1), 34-40.
- Rozell, E.J., Gardner III, W.L. (1999). Computer-related success and failure: a longitudinal field study of the factors influencing computer-related performance. Computers in Human behavior, 15(1), 1-10.
- Shankar, S., Reuther, A. (2022, September). Trends in energy estimates for computing in ai/machine learning accelerators, supercomputers, and compute-intensive applications. In 2022 IEEE High Performance Extreme Computing Conference (HPEC), 1-8.
- Shim, H., Hahm, J. (2023). Preferences for Supercomputer Resources Using the Logit Model. Journal of information and communication convergence engineering, 21(4), 261-267.
- Shim, H., Hahm, J. (2023). A study on demand management plans for National Supercomputer resources. Technology in Society, 75, 102376.
- Sisman, S., Aydinoglu, A.C. (2022). A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul. Land Use Policy, 119, 106183.
- Souza, J., Silva, A., de Brito, J., Bauer, E. (2018). Analysis of the influencing factors of external wall ceramic claddings' service life using regression techniques. Engineering Failure Analysis, 83, 141-155.
- Wen, J., Wei, X., He, T., Zhang, S. (2020). Regression Analysis on the Influencing Factors of the Acceptance of Online Education Platform among College Students. Ingenierie des Systemes d'Information, 25(5).