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ON A CERTAIN GENERALIZATION OF POLYGROUPS BY

E-POLYGROUPS

Akbar Dehghan Nezhad and Bijan Davvaz∗

Abstract. In this paper, first we generalize the notion of polygroups and

weak polygroups by the notion of E-polygroups and weak E-polygroups.

Then, we study the isomorphism theorems on E-polygroups and weak
E-polygroups. Finally, the fundamental relations on weak E-polygroups

are investigated.

1. Introduction

Algebraic hyperstructures were introduced by a French mathematician, F.
Marty [11] in 1934. Afterwards, this new idea was expanded rapidly and showed
himself as a new view on sets. In this context, hundreds papers and several
books have been written on this topic. One of the first books, dedicated es-
pecially to hypergroups is “Prolegomena of Hypergroup Theory”, written by
P. Corsini in 1993 [3]. Another book on “Hyperstructures and Their Repre-
sentations” was published one year later [14]. Another book on these topics is
“Applications of Hyperstructure Theory”, written by P. Corsini and V. Leore-
anu [4] and “Polygroup Theory and Related Systems” wrtten by B. Davvaz [6],
also see [1, 10, 12, 13]. Algebraic hyperstructure theory has also a multiplicity
of applications to other sciences, such as geometry, graphs and hypergraphs,
binary relations, lattices, groups, relation algebras, artificial intelligence, prob-
abilities and so on, for more recent details see [7, 8, 9].

In the present study, we aimed to extend algebraic hyperstructures such as
polygroups and weak polygroups by the concepts of E-polygroups and weak E-
polygroups, where the non-empty subset E plays a similar role of the identity.
Besides mathematical applications, this approach may have of importance in
physics and other sciences.

After providing some interesting examples, we investigate the characteriza-
tions of these concepts and address which properties and constructions of usual
polygroups and weak polygroups still remain true for E-polygroups and weak
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E-polygroups. In particular, E-normal subpolygroups and the extensions of
weak E-polygroups are discussed. We also study isomorphism of E-polygroups
and conditions under which isomorphism theorems hold. Finally, the funda-
mental relation on a weak E-polygroup are defined as the smallest equivalence
relation turning it into a group, and some results are obtained.

2. Preliminaries and notations

In this section, we summarize the general preliminary definitions of algebraic
hyperstructures and we exclude special cases.

Definition 2.1. Let H be a non-empty set and let P∗(H) be the set of
all non-empty subsets of H, we define the concepts of hyperoperation, semi-
hypergroup, hypergroup, Hv-group and regular hypergroup as following:

(i) A hyperoperation on H is defined as a map ⊗ : H × H −→ P∗(H)
and the couple (H,⊗) is called a hypergroupoid. If A and B are non-
empty subsets of H, then we denote A⊗B =

⋃
a∈A, b∈B a⊗ b, x⊗A =

{x} ⊗A and A⊗ x = A⊗ {x}, where x ∈ H.
(ii) A hypergroupoid (H,⊗) is called a semi-hypergroup if we have (x⊗ y)⊗

z = x⊗ (y ⊗ z) for all x, y, z of H, which means⋃
u∈x⊗y

u⊗ z =
⋃

v∈y⊗z

x⊗ v.

(iii) We say that a semi-hypergroup (H,⊗) is a hypergroup if we have x⊗H =
H ⊗ x = H for all x ∈ H.
A hypergroupoid (H,⊗) is anHv-group, if for all x, y, z ∈ H, the following
conditions hold:

(1) x⊗ (y ⊗ z) ∩ (x⊗ y)⊗ z ̸= ∅ (weak associativity),
(2) x⊗H = H ⊗ x = H (reproduction axiom).
(iv) A hypergroupoid (H,⊗) is said to be commutative (or abelian ) if

x⊗ y = y ⊗ x for all x, y ∈ H.
(v) A hypergroup (H,⊗) is called regular if it has at least an identity, that is

an element e of H, such that for all x ∈ H,x ∈ e⊗x∩x⊗e and moreover
each element has at least one inverse, that is if x ∈ H, then there exists
x′ ∈ H such that e ∈ x ⊗ x′ ∩ x′ ⊗ x. The set of all identities of H is
denoted by E(H)

(vi) If x ∈ H, il(x) = {x′ : e ∈ x′ ⊗ x} is the set of all left inverses of x in H
(resp. ir(x)) and i(x) = il(x) ∩ ir(x).

(vi) A regular hypergroup (H,⊗) is called reversible if for all (x; y; a) ∈ H3:
(1) y ∈ a⊗ x, then there exists a′ ∈ i(a) such that x ∈ a′ ∩ y;
(2) y ∈ x⊗ a, then there exists a′′ ∈ i(a) such that x ∈ y ⊗ a′′.

Definition 2.2. Let (H,⊗) be an Hv-group and K be a non-empty subset
of H. Then K is called an Hv-subgroup of H if (K,⊗) is an Hv-group.
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Definition 2.3. Let (H,⊗) be a hypergroup, K a nonempty subset of H.
We say thatK is invertible to the left if the implication y ∈ K⊗x =⇒ x ∈ K⊗y
valid. We say K is invertible if K is invertible to the right and to the left.

Proposition 2.4. [?]. If (H,⊗) is a hypergroup such that E(H) ̸= ϕ; and
K is an invertible subhypergroup of it, then E(H) ⊆ K.

Proof. Suppose that e ∈ E(H). Since K ⊆ e⊗K, we have e ∈ K⊗K ⊆ K,
because K is an invertible subhypergroup.

Definition 2.5. Let (H1, ·), (H2, ∗) be twoHv-groups. A map f : H1 → H2

is called an Hv-homomorphism or a weak homomorphism if

f(x · y) ∩ f(x) ∗ f(y) ̸= ∅ for all x, y ∈ H1.

f is called an inclusion homomorphism if

f(x · y) ⊆ f(x) ∗ f(y) for all x, y ∈ H1.

Finally, f is called a strong homomorphism if

f(x · y) = f(x) ∗ f(y) for all x, y ∈ H1.

If f is onto, one to one and strong homomorphism, then it is called an iso-
morphism. In this case, we write H1

∼= H2. Moreover, if the domain and the
range of f are the same Hv-group, then the isomorphism is called an automor-
phism. We can easily verify that the set of all automorphisms of H, denoted
by AutH, is a group.

Definition 2.6. [2] A multivalued system ⟨P, ◦, e,−1 ⟩, where e ∈ P, −1 :
P −→ P , ◦ : P ×P −→ P∗(P ) is called a polygroup (a weak polygroup) if the
following axioms hold for all x, y, z ∈ P ;
I) (x ◦ y) ◦ z = x ◦ (y ◦ z) , ((x ◦ y) ◦ z ∩ x ◦ (y ◦ z) ̸= ∅),
II) x ◦ e = x = e ◦ x,
III) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

Example 2.7. Consider P = {e, 1, 2, 3} and define ◦ on P with help of the
following table;

◦ e 1 2 3
e e 1 2 3
1 1 1 {e, 1, 2, 3} 3
2 2 {e, 1, 2} 2 {2, 3}
3 3 {1, 3} 3 {e, 1, 2, 3}

Then ⟨P, ◦, e,−1 ⟩, where x−1 = x, for every x ∈ P , is a polygroup.

A polygroup is a special case of a hypergroup.

Example 2.8. Consider P = {e, 1, 2, 3} and define ◦ on P with help of the
following table;
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◦ e 1 2 3
e e 1 2 3
1 1 {e, 1} 3 2
2 2 3 {e, 2} 1
3 3 2 1 {e, 3}

Then ⟨P, ◦, e,−1 ⟩, where x−1 = x, for every x ∈ P , is a weak polygroup which
is not a polygroup. Indeed, we have (1 ◦ 2) ◦ 3 = 3 ◦ 3 = {e, 3} and 1 ◦ (2 ◦ 3) =
1 ◦ 2 = {e, 1}. Therefore ◦ is not associative.

Example 2.9. A natural example of a polygroup is the system G//H of
all double cosets of a group G modulo a subgroup H. Namely, the polygroup
G//H =< {HgH : g ∈ G}, ◦, H,−1> where (HgH) ◦ (Hg′H) = {Hghg′H :
h ∈ H} and (HgH)−1 = Hg−1H.

3. E-polygroups

Definition 3.1. A multivalued system < P, ◦, E,−J >, where ∅ ̸= E ⊆ P ,
−J : P → P is unitary operation on P and ◦ : P×P → P∗(P ) a hyperoperation
on P , is called an E-polygroup if the following axioms hold for all x, y, z ∈ P ;

(IP1) (x ◦ y) ◦ z = x ◦ (y ◦ z);
(IP2) x ∈ x ◦ E ∩ E ◦ x;
(IP3) x ∈ y ◦ z implies y ∈ x ◦ z−J and z ∈ y−J ◦ x.
If instead of IP1, a multivalued system < P, ◦, E,−J > satisfies the weaker
condition

(IP′
1) (x ◦ y) ◦ z ∩ x ◦ (y ◦ z) ̸= ∅,

it is called a weak E-polygroup.

Obviously, any weak E-polygroup is an E-polygroup.

Example 3.2. Consider P = {e, e′ , 1, 2, 3}, E = {e, e′} and define ◦2 on P
with help of the following table;

◦2 e e
′

1 2 3

e e e
′

1 2 3

e
′

e e
′

1 2 3
1 1 1 1 {e, 1, 2, 3} 3
2 2 2 {e, 1, 2} 2 {2, 3}
3 3 3 {1, 3} 3 {e, 1, 2, 3}

Then ⟨P, ◦2, E,−J ⟩, where a−J = a, for every a ∈ P, is a polygroup.

Proposition 3.3. For every element of x of any weak E-polygroup <
P, ◦, E,−J >, one has x ◦ x−J ∩ E ̸= ∅ and x−J ◦ x ∩ E ̸= ∅.
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Proof. By IP2, for every x ∈ P there exists some e ∈ E such that x ∈ e ◦ x,
and by IP3, we have e ∈ x ◦ x−J . Thus, e ∈ (x ◦ x−J) ∩ E ̸= ∅. Likewise, one
can prove (x−J ◦ x) ∩ E ̸= ∅.

Example 3.4. Naturally, every polygroup ⟨P, ◦, e,−1 ⟩ is an E-polygroup
⟨P, ◦, E,−1 ⟩ by setting E = {e}. More generally, one can let E be any subset
of P containing e.

Example 3.5. Assume that (G, ·) is an abelian group with the identity e.
Let E be any subset of G with more than one element such that e ∈ E and E
is closed under inversion. We define the hyperoperation ⊙ as follows,

x⊙ y =

{
x · y · E, if x ̸= e, y ̸= e
E, if x = e or y = e

The multivalued system < G,⊙, E,−J > is a E-polygroup, where −J denotes
the inverse operation of (G, ·).

Example 3.6. A projective geometry is an incidence system (P,L,R) con-
sisting of a set of points P , a set of lines L and incidence relation R ⊆ P × L
satisfying the following axiom:

1. Any line contains at least three points;
2. Two distinct points a, b are contained in a unique line denoted by L(a, b);
3. If a, b, c, d are distinct points and L(a, b) intersects L(c, d), then L(a, c)

must intersect L(b, d) (Pasch axiom).

Let P ′ = P ∪ E, where E is a set with P ∩ E = ϕ and define

For a ̸= b ∈ P, a ◦ b = L(a, b) \ {a, b};
For a ∈ P , if any line contains exactly three points, put a ◦ a = E,
otherwise a ◦ a = {a} ∪ E;
For a ∈ P ′, E ◦ a = a ◦ E = {a}, where a−J = a.

Then it is easily verified that ⟨P ′, ◦, E,−J ⟩ is a weak E-polygroup.

Definition 3.7. Let< P, ◦, E,−J > be an E-polygroup (a weak E-polygroup)
and E ⊆ K ⊆ P . We say that a subset K of P is an E-subpolygroup (a weak
E-subpolygroup), if the multivalued system < K, ◦, E,−J > be an E-polygroup
(a weak E-polygroup).

Lemma 3.8. Let < P, ◦, E,−J > be an E-polygroup (weak E-polygroup)
and E ⊆ K ⊆ P . Then K is an E-subpolygroup (weak E-subpolygroup) of P
if and only if (i) x ◦ y ⊆ K for any x, y ∈ K, (ii) x−J ∈ K for any x ∈ K.

Proof. It is straightforward.

Definition 3.9. An E-subpolygroup N of an E-polygroup P is E-normal
in P if and only if a−JNa ⊆ N , for every a ∈ P .

It is easy to prove the following corollaries.
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Corollary 3.10. Let N be an E-normal in P . Then

1. Na = aN , for all a ∈ P ;
2. (Na)(Nb) = Nab, for all a, b ∈ P ;
3. Na = Nb, for all b ∈ Na.

Corollary 3.11. Let K and N be two E-subpolygroups in P with N E-
normal in P . Then
N ∩K is an E-normal in K;
NK = KN is an E-subpolygroup of P ;
N is an E-normal in NK.

Definition 3.12. If N is an E-normal in P , then we define the relation
x ≡ y (mod N) if and only if xy−J ∩ N ̸= ∅. This relation is denoted by
xNP y.

Lemma 3.13. The relation NP is an equivalence relation on week E-
polygroups.

Proof. Since E ⊆ x ·x−J ∩N for all x ∈ P ; then xNPx, i.e., NP is reflexive.
The proof of symmetric and transitivity of the relation of Np is similar to
Lemma 2.4. in [?].

Example 3.14. Let (G, ·) be a group and θ an equivalence on G. Let θ[x]
be the equivalence class of the element x ∈ G. Suppose that E = θ[e] and
x−J = x−1. It is not difficult to see that the hyperstructure < G,⊙, E,−J > is
a weak E-polygroup, when the hyperoperation ⊙ is defined as follows:

⊙ : H ×H → P∗(P ), by x⊙ y = {θ[z]|z ∈ θ[x] · θ[y]}.
Proposition 3.15. Let (G, ·) be a group and θ an equivalence on G such

that

(i) xθy and y ∈ E implies x ∈ E,
(ii) xθy implies x−Jθy−J .

Let θ(x) be an equivalence class of the element x ∈ G. If G/θ = {θ(x)|x ∈ G},
then < G/θ,⊙, θ(E),−J > is a weak E-polygroup, where the hyperoperation ⊙
is defined as follows:

⊙ : G/θ ×G/θ → P∗(G/θ)

θ(x)⊙ θ(y) = {θ(z)|z ∈ θ(x) · θ(y)},
and θ(x)−J = θ(x−J).

Proof. For all x, y, z ∈ G, we have x · (y · z) ∈ θ(x) ⊙ (θ(y) ⊙ θ(z)) and
(x ·y) ·z ∈ (θ(x)⊙θ(y))⊙θ(z), therefore ⊙ is week associative. It is easy to see
that for any θ(x) ∈ G/θ, θ(x) ∈ (θ(x)⊙θ(E))∩(θ(E)⊙θ(x)). Now, we show that
θ(z) ∈ θ(x)⊙θ(y) implies θ(x) ∈ θ(z)⊙θ(y−J) and θ(y) ∈ θ(x−J)⊙θ(z). Since
θ(z) = θ(a) for some a ∈ θ(x) · θ(y), so there exist b ∈ θ(x) and c ∈ θ(y) such
that a = b ·c, so b = a ·c−J which implies that θ(b) = θ(a ·c−J) ∈ θ(a)⊙θ(c−J).
Hence θ(x) ∈ θ(z)⊙θ(y−J). By the similar way, we obtain θ(y) ∈ θ(x−J)⊙θ(z).
Therefore < G/θ,⊙, θ(E),−J > is a weak E-polygroup.
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Theorem 3.16. Let A =< A, ·, E,−J > and B =< B, ·, E,−J > be two
weak E-polygroups whose elements have been renamed so that A ∩ B = E,
where E is identity of A and B. If E ⊆ x · x−1 for any x ∈ P . Then the new
system A[B] =< M, ∗, E,−J >, which is called the extension of A by B is a
weak E-polygroup.

Proof. The second condition of Definition 3.1, is clear. It is enough to check
the conditions (IP1) and (IP3) of Definition 3.1. Without loss of generally, we
may assume x, y, z /∈ I and not elements belong to A. Note that

(1) If u ∈ B and v ∈ A, then u ∗ v = v ∗ u = u.
If exactly one of x, y, z belongs to B, then (1) implies that both sides of

(IP1) equal the element in {x, y, z} ∩ B. If exactly two of x, y, z belong to B,
say u and v, then (1) implies that both sides of (IP1) equal u ∗ v. We assume
that x, y, z ∈ B − E and show that

(2) u ∈ (x ∗ y) ∗ z implies u ∈ x ∗ (y ∗ z).
If u /∈ A, then u ∈ w ∗ z for some w ∈ x ∗ y. Now, if w /∈ A, w ∈ x · y and

u ∈ w ·z so u ∈ (xy)z = x(yz) (in B) ⊆ x∗ (y ∗z). Also, if w ∈ A, u ∈ w ∗z = z
(so u = z) and E ⊆ xy. Thus, u = z ∈ (xy)z = x(yz) ⊆ x ∗ (y ∗ z). Now,
suppose that u ∈ A. Then z−J ∈ x ∗ y, z−J /∈ A so z−J ∈ xy (in B), so
E ⊆ (xy)z = x(yz). Thus, x−J ∈ yz ⊆ y ∗ z and hence u ∈ A ⊆ x ∗ (y ∗ z).

The proof of the opposite inclusion is similar to (2).
The condition (IP3) is clear if x, y, z ∈ A. Since x ∈ B − E implies y or z

belongs to B−E and x ∈ A implies z ∈ B−E, we may assume at least two of
x, y, z belong to B − E. On the other hand, if x, y, z ∈ B − E, then x ∈ y ∗ z
implies x ∈ y · z (in B) from which (IP3) follows. Therefore, we may assume
exactly two of x, y, z belong to B − I. This reduced to two cases:

(3) x ∈ y ∗ z, where x, y ∈ B − E and z ∈ A.
By (1), y ∗ z = y so x = y, thus y = x = x ∗ z−J using (1) again and

z ∈ A ⊆ x−J ∗ x = y−J ∗ x.
(4) x ∈ y ∗ z where x ∈ A and y, z ∈ B − E.
In this case y = z−J so the desired conclusion follows using (1). This

completes the proof of (IP3) and hence the theorem.

The equivalence relation θ on a weak E-polygroup P is called a full conjugation
on P if

1. xθy implies x−Jθy−J ,
2. z ∈ x·y and z1θz imply z1 ∈ x1·y1 for some x1 and y1, where θ(x1) = θ(x)

and θ(y1) = θ(y).

The collection of all θ-classes, with the induced operation from P , forms a weak
E-polygroup.

Corollary 3.17. Let M be a weak E-polygroup, then θ is full conjugation
on P if and only if (i) (θ(x))−J = θ(x−J); (ii) θ(θ(x)y) = θ(x)θ(y).

Definition 3.18. Let A =< A, ·, E1,
−J > and B =< B, ∗, E2,

−J > be
two weak E1-polygroup and weak E2-polygroup. Let f be a mapping from
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A into B, such that f(E1) = E2. Then f is called a strong homomorphism, if
f(x · y) = f(x) ∗ f(y), for all x, y ∈ A.

We recall the following definition from [5].

Definition 3.19. If A is a weak E-subpolygroup of a weak E-polygroup P ,
then the relation a ≡ b (modA) if and only if there exists a set {c0, c1, . . . , ck+1}
⊆ P , where c0 = a, ck+1 = b such that

a · c−J
1 ∩A ̸= ∅, c1 · c−J

2 ∩A ̸= ∅, . . . , ck · b−J ∩A ̸= ∅.
This relation is defined by aA∗

P b.

Theorem 3.20. The relation A∗
P is an equivalence relation on weak E-

polygroups.

Proof. 1. Since for any x ∈ A, there exists e ∈ E such that e ∈ x·x−1∩A,
then aA∗

Pa, i.e., A
∗
P is reflexive.

2. Suppose that aA∗
P b, then there exists {c0, c1, . . . , ck+1} ⊆ P , where c0 =

a, ck+1 = b such that

a · c−J
1 ∩A ̸= ∅, c1 · c−J

2 ∩A ̸= ∅, . . . , ck · b−J ∩A ̸= ∅.

Therefore, there exists xi ∈ ci · c−1
i+1 ∩ A (i = 1, . . . , k) which implies

x−1
i ∈ ci+1 · c−1

i and x−1
i ∈ A, this means that bA∗

Pa.
3. Let aA∗

P b and bA
∗
P c, where a, b, c ∈ P . Then, there exist {c0, c1, . . . , ck+1}

⊆ P and {d0, d1, . . . , dk+1} ⊆ P , where c0 = a, ck+1 = b = d0, dr+1 = c
such that

a · c−J
1 ∩A ̸= ∅, c1 · c−J

2 ∩A ̸= ∅, . . . , ck · b−J ∩A ̸= ∅,

b · d−J
1 ∩A ̸= ∅, d1 · d−J

2 ∩A ̸= ∅, . . . , dr · c−J ∩A ̸= ∅.
We take {c0, c1, . . . , ck+1, d1, d2, . . . , dr+1} ⊆ P which satisfies the condi-
tion for aA∗

P c.

We denote A∗
P [x] the equivalence class with representative x.

Theorem 3.21. Let P be a weak E-polygroup. IfA is a weak E-subpolygroup
of P , then on the set [P : A] = {A∗

P [a]|a ∈ P} we define the hyperoperation ⊙
as follows:

A∗
P [a]⊙A∗

P [b] = {A∗
P [c]|c ∈ A∗

P [a] ·A∗
P [b]},

what gives the weak E-polygroup < [P : A],⊙, A∗
P [E],−J >, where A∗

P [a]
−J =

A∗
P [a

−J ].

Proof. We show that A∗
P [a] ∈ A∗

P [a]⊙A∗
P [e] for any e ∈ I. Since x ∈ x · e ⊆

A∗
P [x] · A∗

P [e] ⊆ A∗
P [x] · A∗

P [E], for some e ∈ E. Then A∗
P [e] ∈ A∗

P [x] ⊙ A∗
P [e].

So, A∗
P [x] ∈ A∗

P [x]⊙A∗
P [E].

The proof of the conditions (i) and (iii) of Definition 3.1 of ⊙ is similar to
Theorem 2.5. in [5].
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If A is a weak E-polygroup of P , then the weak E-polygroup [P : A] is called
the quotient weak E-subpolygroup of P by A.

Corollary 3.22. Let ρ be strong homomorphism from a weak E1-polygroup
P1 into a weak E2-polygroup P2. Then the following propositions hold:

(i) For all a ∈ P1, ρ(a
−J) = ρ(a)−J ;

(ii) The ker of ρ is a weak E-subpolygroup of P1;
(iii) Let A be a weak E-subpolygroup of P1. The image ρ(A) = {ρ(x)|x ∈ A}

is a weak E-subpolygroup of P2, the inverse image ρ−1(B) = {x|x ∈
P1, ρ(x) ∈ B} is a weak E-subpolygroup of P1.

Theorem 3.23. (Fundamental Homomorphism Theorem). Let P1 and P2

be two weak E1-polygroup and E2-weak polygroup and ρ be a strong homo-
morphism from P1 onto P2 with kernel K. Then [P1 : K] ∼= P2.

Proof. We prove that ϕ : [P1 : K] −→ P2 by ϕ(K∗
P1
[x]) = ρ(x) for any x ∈

P1 is well defined. IfK
∗
P1
[x] = K∗

P1
[y], then there exists {z0, z1, . . . , zk+1} ⊆ P1,

where z0 = x, zk+1 = y such that

x · z−J
1 ∩K ̸= ∅, z1 · z−J

2 ∩K ̸= ∅, . . . , zk · y−J ∩K ̸= ∅.

Thus, there exist e1, . . . , ek+1 ∈ E1 such that

e1 ∈ ρ(x · z−J
1 ), e2 ∈ ρ(z1 · z−J

2 ), . . . , ek+1 ∈ ρ(zk · y−J) or e1 ∈ ρ(x) ∗ ρ(z1)−J ,
e2 ∈ ρ(z1) ∗ ρ(z2)−J ,. . . , ek+1 ∈ ρ(zk) ∗ ρ(y)−J

and so ρ(x) = ρ(y).
It is obvious that ϕ is homomorphism. Also, ϕ(K) = ϕ(K∗

P1
[E1]) = ρ(E1) =

E2.
Furthermore, if ϕ(K∗

P1
[x]) = ϕ(K∗

P1
[y]), then ρ(x) = ρ(y) which implies that

x ∈ y−J ∩K ̸= ∅ and so K∗
P1
[x] = K∗

P1
[y]. Thus, ϕ is a one to one mapping.

4. Some results for E-polygroups

Let P1 and P2 be a weak E1-polygroup and a weak E2-polygroup, respec-
tively. We recall that a strong homomorphism ϕ : P1 −→ P2 is an isomorphism
if ϕ is one to one and onto. We write P1

∼= P2 if P1 is isomorphic to P2.
Let P1 be an E-polygroup, E ⊆ a · a−J for all a ∈ P1, then we have

ϕ(E) ⊆ ϕ(a)∗(ϕa−J) or E2 ⊆ ϕ(a)∗ϕ(a−J) which implies ϕ(a−J) ∈ ϕ(a)−J ∗e2,
for some e2 ∈ E2, therefore ϕ(a1) = ϕ(a)−J for all a ∈ P1. Moreover, if
ϕ is a strong homomorhism from P1 into P2, then the kernel of ϕ is the set
kerϕ = {x ∈ P1|ϕ(x) ∈ E2}. It is trivial that kerϕ is a E-subpolygroup of P1

but in general is not normal in P1.

Lemma 4.1. Let ϕ be a strong homomorphism from P1 into P2. Then
ϕ(y) = ϕ(z) implies y = zE1 if and only if kerϕ = E1.
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Proof. Let y, z ∈ P1 be such that ϕ(y) = ϕ(z). Then ϕ(y) ∗ ϕ(y−J) =
ϕ(z) ∗ ϕ(y−J). It follows that ϕ(e1) ∈ ϕ(yy−J) = ϕ(zy−J), for some e1 ∈ E
and so there exists x ∈ yz−J such that e2 = ϕ(e1) = ϕ(x). Thus, if kerϕ = E1,
then x ∈ E1, whence y = zE. Now, let x ∈ kerϕ. Then ϕ(x) = e ∈ ϕ(E1). So,
x ∈ E1.

We call the homomorphism ϕ : P1 −→ P2 is a weak isomorphism if kerϕ =
E1 and ϕ is onto. If ϕ is a weak isomorphism we say P1 is weak isomorphic
with P2 and denoted by P1

∼=W P2.

Theorem 4.2. (First Isomorphism Theorem). Let ϕ be a strong homomor-
phism from P1 into P2 with kernel K such that K is a normal E-subpolygroup
of P1, then P1/K ∼=W Imϕ.

Proof. We define ψ : P1/K ∼=W Imϕ by setting ψ(Kx) = ϕ(x) for all
x ∈ P1. It is easy to see that ψ is a weak isomorphism.

Theorem 4.3. (Second Isomorphism Theorem). IfK and N are E-subpoly
groups of an E-polygroup P , with N E-normal in P , then K/N ∩ K ∼=W

NK/N .

Proof. Since N is an E-subnormal of P , we have NK = KN . Consequently,
NK is an E-subpolygroup of P . Further N = NE ⊆ NK given that N is an
E-subnormal of NK; so NK/N is defined. Define ϕ : K −→ NK/N by ϕ(k) =
Nk, which is a strong homomorphism. Consider any Na ∈ NK/N, a ∈ NK.
Now a ∈ NK given a ∈ nk for some n ∈ N, k ∈ K. Thus, by Lemma 2.10,
Na = Nnk = Nk = ϕ(k). This shows that ϕ is also onto. If we can establish
that kerϕ = N ∩K, since N ∩K is an E-subnormal of K, we shall get that
K/N ∩K ∼= NK/N . For any k ∈ K,

k ∈ kerϕ⇔ ϕ(k) = N ⇔ Nk = N ⇔ k ∈ N ⇔ k ∈ N ∩K.

That is, k ∈ kerϕ⇔ k ∈ N ∩K. This yields kerϕ = N ∩K. Hence the results
follows.

Theorem 4.4. (Third Isomorphism Theorem). If K and N are two E-
subnormals of an E-polygroup P such that N ⊆ K, then K/N is an E-
subnormal of P/N and (P/N)/(K/N) ∼=W P/K.

Proof. We leave it to reader to verify that K/N is an E-subnormal of P/N .
Furthermore, ϕ : P/N ⇒ P/K defined by ϕ(Nx) = Kx is a strong homomor-
phism of P/N onto P/K such that kerϕ = K/N .

Corollary 4.5. If N1, N2 are two E-subnormals of P1, P2 respectively,
then N1 × N2 is an E-subnormal of P1 × P2 and (P1 × P2)/(N1 × N2) ∼=W

P1/N1 × P2/N2.
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Let < P, ◦, E,−J > be a weak E-polygroup. We can define the relation β∗

as the smallest equivalence relation on P such that quotient P/β∗ is a group.
One can prove that the fundamental relation β∗ is the transitive closure of

the relation β.
The kernel of canonical map ϕ : P → P/β∗ is denoted by ωP . It is easy to

prove that the following statements

(i) ωP = β∗(E);
(ii) β∗(x)−J = β∗(x−J), for all x ∈ P .

LetM1 =< P1, ·, E1,
J1 > andM2 =< P2, ∗, E2,

J2 > be two weak E-polygroups,
then on P1 × P2 we can define a hyperproduct similar to the hyperproduct of
weak E-polygroups as follows: (x1, y1)◦ (x2, y2) = (a, b)|a ∈ x1 · x2, b ∈ y1 ∗ y2.
We call this the direct product of P1 and P2. It is easy to see that P1 × P2

equipped with the usual direct product operation becomes a weak I-polygroup.

Theorem 4.6. Let β∗
1 , β

∗
2 and β∗ be the fundamental equivalence relations

on P1, P2 and P1 × P2 respectively. Then (P1× P2)/β
∗ ∼=W P1/β

∗
1 × P2/β

∗
2 .

Proof. The proof is similar to the proof of Theorem 2.4. in [5].

Similar to polygroups and weak polygroups and using the fundamental
equivalence relation, we can define semidirect hyperproduct of weak E-polygroups.
Let A =< A, ·, E1,

J1 > and B =< B, ∗, E2,
J2 > be two weak E-polygroups.

Consider the group Aut(A) and the fundamental group B/β∗
B , let̂: B/β∗

B → Aut(A),

β∗(b) 7→ β̂∗(b) = b̂

be a homomorphism of groups. Then on A×B we define a hyperproduct of as
follows:

(a1, b1)⊙ (a2, b2) = (x, y)|x ∈ a1 · b̂1(a2), y ∈ b1 ∗ b2.

Theorem 4.7. A×B equipped with the semidirect hyperproduct is a weak
E-polygroup.

Proof. The proof is similar to the proof of Theorem 2.6. in [5].
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