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STATISTICALLY ω-FRÉCHET AND STATISTICALLY

ω-SEQUENTIAL SPACES: STATISTICAL CONVERGENCES

OF ω-NETS

Junhui Kim

Abstract. In this paper, we introduce some modifications of statisti-

cally Fréchet and statistically sequential spaces which were defined in [5],

termed statistically ω-Fréchet and statistically ω-sequential spaces con-
cerned with ω-nets. Our work includes the construction of an illustrative

example that distinguishes these two properties. Furthermore, we estab-

lish general relationships between statistically ω-Fréchet and statistically
ω-sequential properties, demonstrating their equivalence in the class of

statistically ω-transitive spaces.

1. Introduction

Fast ([1]) introduced the notion of statistical convergences of sequences of
real numbers in 1951, and Kostyrko et al ([4]) extended the statistical conver-
gence to sequences in metric spaces. In 2008, Maio and Koc̆inac ([5]) investi-
gated the statistical convergence in topological and uniform spaces.

Throughout this paper, the cardinality of a given set A is denoted by |A|.
For any A ⊆ N and n ∈ N, denote A(n) = {k ∈ A : k ≤ n}. Then we say that

δ(A) = lim inf
n→∞

|A(n)|
n

and

δ(A) = lim sup
n→∞

|A(n)|
n

are the lower and upper asymptotic density of A respectively. When δ(A) =
δ(A),

δ(A) = lim
n→∞

|A(n)|
n
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is called the asymptotic density of A. One can prove easily that all the three
densities, if they exist, are in [0, 1], and δ(N \A) = 1− δ(A) for any A ⊆ N.

Definition 1.1 ([1]). A sequence ⟨xn : n ∈ N⟩ in a topological space X is
said to converge statistically (or s-converge) to p ∈ X, if for every neighborhood
U of p, δ(A) = 0, where A = {n ∈ N : xn ̸∈ U}.

Definition 1.2 ([5]). A sequence ⟨xn : n ∈ N⟩ in a topological space X is
said to s∗-converge to p ∈ X if there exists a subset A ⊆ N with δ(A) = 1 such
that the sequence ⟨xn : n ∈ A⟩ converges to p, that is, for every neighborhood
U of p there is n0 ∈ N such that n ≥ n0 and n ∈ A imply xn ∈ U .

It was shown in [2] that s-convergence and s∗-convergence are equivalent
when X = R. Furthermore, Maio and Koc̆inac proved in [5] that they are
equivalent in the class of first countable spaces.

In Section 2, we introduce two concepts pertaining to the statistical con-
vergence of ω-nets: s-convergence and s∗-convergence. We investigate their
general relationships, establishing their equivalence in the class of first count-
able spaces.

Section 3 is dedicated to the study of statistically ω-Fréchet spaces and
statistically ω-sequential spaces. Specifically, we observe that every statistically
ω-Fréchet space is statistically ω-sequential; however, we establish that the
converse is not true. Additionally, we demonstrate that every statistically ω-
Fréchet space is statistically Fréchet. We explore some characterization of the
statistically ω-sequential property. Finally, we prove an equivalence of the
statistically ω-Fréchet property and statistically ω-sequentiality in the class of
statistically ω-transitive spaces.

2. Statistical Convergence of ω-Nets

In this section, we introduce the notion of statistical convergence of ω-nets
in topological spaces. All spaces are assumed to be Hausdorff, ω is the first
countably infinite ordinal, and [ω]<ω is the collection of all finite subsets of ω.

A subfamily F = {Fk : k ∈ N} of [ω]<ω is said to be strictly increasing if
F1 = ∅; Fk ⊊ Fk+1 for each k ∈ N; and |Fk+1| = |Fk|+ 1 for each k ∈ N.

For a strictly increasing subfamily F = {Fk : k ∈ N} of [ω]<ω, let A ⊆ F .
For each k ∈ N define AF (k) = {Fn ∈ A : Fn ⊆ Fk}. Note that n ≤ k if and
only if Fn ⊆ Fk.

Remark 2.1. We may take A as an arbitrary subfamily of [ω]<ω. In this
case, we define AF (k) = {Fn ∈ A ∩ F : Fn ⊆ Fk}.

Now we say that

δ(AF ) = lim inf
k→∞

|AF (k)|
k
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and

δ(AF ) = lim sup
k→∞

|AF (k)|
k

are the lower and upper asymptotic density of A over F respectively. When
δ(AF ) = δ(AF ),

δ(AF ) = lim
k→∞

|AF (k)|
k

is called the asymptotic density of A over F .
All the three densities, if they exist, are in [0, 1]. Moreover, we have the

following:

Lemma 2.2. Let F = {Fk : k ∈ N} be a strictly increasing subfamily
of [ω]<ω and let A be a subfamily of F . Assume that δ(AF ) exists. Then
δ(BF ) = 1− δ(AF ) where B = F \ A.

Proof. Suppose δ(AF ) = c ∈ [0, 1]. Then for any ϵ > 0, there exists k0 ∈ N
such that k ≥ k0 implies

c− ϵ <
|AF (k)|

k
< c+ ϵ.

Since k = |AF (k)|+ |BF (k)|, we have

1− |AF (k)|
k

=
|BF (k)|

k
.

Hence

1− c− ϵ <
|BF (k)|

k
< 1− c+ ϵ.

Therefore δ(BF ) = 1− δ(AF ).

Let X be a topological space. An ω-net in X is a function ξ : [ω]<ω → X
such that [ω]<ω is directed by ⊆. The ω-net ξ is usually denoted by ⟨xF : F ∈
[ω]<ω⟩, or ⟨xF ⟩ where xF = ξ(F ) for all F ∈ [ω]<ω.

We say that an ω-net ⟨xF ⟩ in a space X converges to p ∈ X ([3]) if for any
open neighborhood V of p in X, there exists F ∈ [ω]<ω such that

xG ∈ V for all G ∈ [ω]<ω with G ⊇ F.

Now we introduce some concepts of statistical convergences of ω-nets as
follows:

Definition 2.3. An ω-net ⟨xF ⟩ in a space X is said to converge statistically
(or, s-converge) to p ∈ X if for every open neighborhood U of p and for every
strictly increasing subfamily F = {Fk : k ∈ N} of [ω]<ω,

δ(AF ) = 0

where A = {Fk ∈ F : xFk
̸∈ U}.
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Note that the limit of an s-convergent ω-net is uniquely determined in Haus-
dorff spaces.

Definition 2.4. An ω-net ⟨xF ⟩ in a space X is said to s∗-converge to p ∈ X
if for any strictly increasing subfamily F = {Fk : k ∈ N} of [ω]<ω, there exists
a subfamily A of F satisfying the following:

• δ(AF ) = 1;
• for every open neighborhood U of p there exists Fk0

∈ F such that
Fk ⊇ Fk0

and Fk ∈ A imply xFk
∈ U .

Theorem 2.5. If an ω-net ⟨xF ⟩ in a space X s∗-converges to p, then ⟨xF ⟩
s-converges to p.

Proof. Let U be an open neighborhood of p and let F = {Fk : k ∈ N} be
a strictly increasing subfamily of [ω]<ω. Since ⟨xF ⟩ s∗-converges to p, there
exists a subfamily A of F satisfying the following:

• δ(AF ) = 1;
• for every open neighborhood U of p there exists Fk0

∈ F such that
Fk ⊇ Fk0

and Fk ∈ A imply xFk
∈ U .

Denote B = {Fk ∈ F : xFk
̸∈ U} and C = {F1, F2, · · · , Fk0

} ∪ (F \ A). Then
BF (k) ⊆ CF (k) for each k ∈ N. It is easy to prove that δ(CF ) = 0 by using
Lemma 2.2, and hence δ(BF ) = 0. Therefore the ω-net ⟨xF ⟩ s-converges to
p.

Theorem 2.6. Let X be a first countable space. Then the converse of
Theorem 2.5 holds.

Proof. We assume that an ω-net ⟨xF ⟩ in X s-converges to p ∈ X. Let
F = {Fk : k ∈ N} be a strictly increasing subfamily of [ω]<ω and take a
countable decreasing local base {Ui : i ∈ N} of p in X. For each i ∈ N, we
denote

Ai = {Fk ∈ F : xFk
∈ Ui}.

Then it is clear that A1 ⊇ A2 ⊇ A3 ⊇ · · · and δ(Ai
F ) = 1 for each i ∈ N.

Choose Fk1
∈ A1. Then there exists Fk2

∈ A2 such that

• Fk2
⊋ Fk1

;
• for every Fn ∈ F such that Fn ⊋ Fk2

, the following holds:

|A2
F (n)|
n

=
|{Fm ∈ A2 : m ≤ n}|

n
>

1

2
.

By induction, we obtain the family {Fki
: i ∈ N} such that

• Fki+1 ⊋ Fki for each i ∈ N;
• Fki ∈ Ai for each i ∈ N;
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• for every Fn ∈ [ω]<ω such that Fn ⊋ Fki
, the following holds:

|Ai
F (n)|
n

=
|{Fm ∈ Ai : m ≤ n}|

n
> 1− 1

i
.

Now we define a subfamily A of F as following:

• for each Fn ⊆ Fk1
, Fn ∈ A;

• if i ≥ 1 and Fki
⊊ Fn ⊆ Fki+1

, then

Fn ∈ A if and only if Fn ∈ Ai.

Then if n ∈ N is such that Fki ⊆ Fn ⊆ Fki+1 , then we have

|AF (n)|
n

≥ |Ai
F (n)|
n

> 1− 1

i
,

and hence δ(AF ) = 1.

Let U be an open neighborhood of p and let Ui ⊆ U . If Fn ∈ A with
Fn ⊇ Fki

, then there exists kj ≥ ki with Fkj
⊆ Fn ⊆ Fkj+1

. Hence we have
xFn ∈ Uj ⊆ Ui ⊆ U . Therefore the ω-net ⟨xF ⟩ s∗-converges to p.

3. Statistically ω-Fréchet and Statistically ω-Sequential Spaces

In this section, we extend the definitions of κ-Fréchet and κ-sequential
spaces using the framework of statistical convergence, particularly when κ = ω.
In [3], Hodel investigated the notions and properties of κ-Fréchet and κ-net
spaces when κ is any infinite cardinal. The definitions are as follows: A space
X is said to be κ-Fréchet if for every p ∈ A, there exists a κ-net ⟨xF : F ∈ [κ]<ω⟩
in A which converges to p. A space X is said to be a κ-net space if for any non-
closed subset A of X, there exist a point p ∈ A\A and a κ-net ⟨xF : F ∈ [κ]<ω⟩
in A such that ⟨xF ⟩ converges to p. For convenience, we shall use the termi-
nology “κ-sequential” instead of “κ-net space”.

Maio and Koc̆inac in [5] introduced the following definitions and investigated
some relevant properties. In fact, they used the term “Fréchet-Urysohn” or
“FU”. But we shall take the term “ Fréchet” for simplicity.

Definition 3.1 ([5]). A space X is said to be statistically Fréchet (or for
brevity, s-Fréchet) if for each A ⊆ X and each p ∈ A there is a sequence in A
s-converging to p.

Definition 3.2 ([5]). A space X is said to be statistically sequential (or for
brevity, s-sequential) if for each non-closed A ⊆ X, there are a point p ∈ A and
a sequence in A s-converging to p.

We introduce the following new concepts for statistical convergences of ω-
nets from our observations.
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Definition 3.3. A space X is said to be statistically ω-Fréchet (or, sω-
Fréchet) if for every p ∈ A, there exists an ω-net ⟨xF ⟩ in A which s-converges
to p.

Definition 3.4. A space X is said to be statistically ω-sequential (or, sω-
sequential) if for every non-closed subset A of X, there exist a point p ∈ A \A
and an ω-net ⟨xF ⟩ in A which s-converges to p.

By definitions, every sω-Fréchet space is sω-sequential. But the converse
does not hold.

Example 3.5. There exists an sω-sequential space which is not sω-Fréchet.

Let S = {n2 : n is a non-negative integer}. For any F ∈ [ω]<ω, let ⟨xF,G :
G ∈ [ω]<ω⟩ be an ω-net in the Euclidean space R defined by

• if |F | ̸∈ S, then ⟨xF,G : G ∈ [ω]<ω⟩ s-converges to xF = 1
|F |+1 ;

• if |F | ∈ S, then ⟨xF,G : G ∈ [ω]<ω⟩ s-converges to xF = |F |+ 1.

First, we show that the ω-net ⟨xF ⟩ s-converges to 0: Let U = (−ϵ, ϵ) be an
open interval for any positive real number ϵ < 1 and let F = {Fk : k ∈ N} be
a strictly increasing subfamily of [ω]<ω. Put A = {Fk ∈ F : xFk

̸∈ U}. Then

|AF (n)|
n

=
|{Fk ∈ A : k ≤ n}|

n
=

|{Fk ∈ F : |Fk| ∈ S, k ≤ n}|
n

+
|{Fk ∈ F : |Fk| ̸∈ S, 1

|Fk|+1 ≥ ϵ, k ≤ n}|
n

.

So we obtain

|{Fk ∈ F : |Fk| ̸∈ S, 1
|Fk|+1 ≥ ϵ, k ≤ n}|

n
→ 0

because the numerator can be regarded as a constant for sufficiently large n.
We also have the following from the facts that |Fn| = n− 1 and δ(S) = 0:

|{Fk ∈ F : |Fk| ∈ S, k ≤ n}|
n

=
|{l2 ∈ S : l2 ≤ |Fn|}|

n

<
|{l2 ∈ S : l2 ≤ |Fn|}|

|Fn|
→ 0,

and hence δ(AF ) = 0. Thus the ω-net ⟨xF ⟩ s-converges to 0.

Now we define a topology on the set

X = {xF,G : F,G ∈ [ω]<ω} ∪ {xF : F ∈ [ω]<ω} ∪ {0}

as follows:

(1) each point xF,G is isolated;
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(2) a basic open neighborhood of xF is of the form

UF = {xF } ∪OF

where OF = {xF,G : δ({G ∈ G : xF,G ̸∈ UF }G) = 0 for every strictly
increasing G ⊆ [ω]<ω};

(3) a basic open neighborhood of 0 is of the form

V = {0} ∪ {xF : δ({F ∈ F : xF ̸∈ V }F ) = 0

for every strictly increasing F ⊆ [ω]<ω}

∪
⋃

{OF : xF ∈ V }

where OF = {xF,G : δ({G ∈ G : xF,G ̸∈ V }G) = 0 for every strictly
increasing G ⊆ [ω]<ω}.

It is clear that the space X is Hausdorff.

Claim 1: X is not sω-Fréchet.

Let A = {xF,G : F,G ∈ [ω]<ω}. Then 0 ∈ A. We show that no ω-
net in A s-converges to 0. Suppose, by the contrary, that an ω-net ⟨yH =
xFH ,GH

: H ∈ [ω]<ω⟩ in A s-converges to 0. Fix an F ∈ [ω]<ω. Let AF =
{xF,G ∈ A : G ∈ [ω]<ω}. Since xF ̸= 0, ⟨yH⟩ does not s-converge to xF .
Without loss of generality, we can assume that there exists an ω-net ξF in
{yH : H ∈ [ω]<ω} ∩ AF such that ξF does not s-converge to xF . Take a basic
open neighborhood UF = {xF } ∪OF of xF and a strictly increasing subfamily
GF of [ω]<ω such that

δ(B(F )GF
) ̸= 0

where B(F ) = {GH ∈ GF : ξF (H) = xF,GH
̸∈ UF }.

Since F is arbitrary, we can denote

O = ∪{OF : F ∈ [ω]<ω}
and

B′ = ∪{B(F ) : F ∈ [ω]<ω}.
Then B′ = {GH ∈ ∪{GF : F ∈ [ω]<ω} : ξF (H) = xF,GH

̸∈ O} and δ(B′
G0
) ̸= 0

for some strictly increasing subfamily G0 of [ω]<ω (precisely, δ(B′
GF

) ̸= 0 for GF

chosen in the above).
Let V = {0} ∪ {xF : F ∈ [ω]<ω} ∪ O. Firstly, we show that V is a basic

open neighborhood of 0. Let F be any strictly increasing subfamily of [ω]<ω

and let A = {F ∈ F : xF ̸∈ V }. Since xF ∈ V for all F ∈ [ω]<ω, A = ∅. Hence
δ(AF ) = 0, that is, {xF : F ∈ [ω]<ω} = {xF : δ(AF ) = 0}. It is clear that
O = ∪{OF : xF ∈ V }, where OF is the set defined in (3). Thus V is a basic
open neighborhood of 0.

But B = {GH ∈ G0 : yH = xFH ,GH
̸∈ V } ⊇ B′ implies that δ(BG0) ≥

δ(B′
G0
) ̸= 0, which is a contraction. Therefore X is not sω-Fréchet.
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Claim 2: X is sω-sequential.

Let B be a non-closed subset of X and let CF = {xF,G : G ∈ [ω]<ω}∪{xF }
for each F ∈ [ω]<ω.

Case 1: When B∩CF is not closed inX for some F ∈ [ω]<ω, xF ∈ B ∩ CF ⊆
B\B. Note that B∩CF can be regarded as an ω-net ⟨yH = xF,GH

: H ∈ [ω]<ω⟩
satisfying the following:

• ⟨yH⟩ consists of all members of B ∩ CF ; and
• H ⊆ I if and only if GH ⊆ GI for each H, I ∈ [ω]<ω.

Then the ω-net ⟨yH⟩ in B s-converges to xF by the definition of basic open
neighborhoods of xF .

Case 2: When B ∩ CF is closed in X for each F ∈ [ω]<ω, we shall show
that B ∩ {xF : F ∈ [ω]<ω} ̸= ∅. Suppose that B ∩ {xF : F ∈ [ω]<ω} = ∅.
Notice that 0 ∈ B \ B since B is not closed in X. Also we obtain that, for
each F ∈ [ω]<ω, CF \ B is a non-empty open neighborhood of xF . Then the
set U = {0} ∪

⋃
{CF \ B : F ∈ [ω]<ω} is an open neighborhood of 0. Since

B ∩ U = ∅, 0 ̸∈ B. This is a contradiction. Hence B ∩ {xF : F ∈ [ω]<ω} ≠ ∅.
We now consider an ω-net ⟨yH = xFH

: H ∈ [ω]<ω⟩ satisfying following:

• ⟨yH⟩ consists of all members of B ∩ {xF : F ∈ [ω]<ω}; and
• H ⊆ I if and only if FH ⊆ FI for each H, I ∈ [ω]<ω.

Then the ω-net ⟨yH⟩ in B s-converges to 0 by the definition of basic open
neighborhoods of 0.

Therefore the space X is sω-sequential.

The following is a special case of a theorem given in [3].

Theorem 3.6 ([3]). Let X be a space and let p ∈ X. Given any sequence
⟨xn : n ∈ ω⟩ in X, there is an ω-net ⟨yF ⟩ in X such that the following hold:

(1) {yF } ⊆ {xn};
(2) ⟨xn⟩ converges to p if and only if ⟨yF ⟩ converges to p.

We have a slightly different theorem.

Theorem 3.7. Let X be a space and let p ∈ X. For any ω-net ⟨yF ⟩ in X,
there exists a sequence ⟨xn : n ∈ N⟩ such that the following hold:

(1) {xn} ⊆ {yF };
(2) if the ω-net ⟨yF ⟩ s-converges to p, then the sequence ⟨xn⟩ s-converges to

p;
(3) if the ω-net ⟨yF ⟩ s∗-converges to p, then the sequence ⟨xn⟩ s∗-converges

to p.

Proof. For each n ∈ N, take xn = yFn
where

Fn = {k ∈ Z : 0 ≤ k < n− 1}.
For example, we have F1 = ∅ and F2 = {0}. Then (1) is obvious.
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To prove (2), let U be an open neighborhood of p and let A = {n ∈ N :
xn ̸∈ U}. We must show that δ(A) = 0. Since the family F = {Fn : n ∈ N}
is a strictly increasing subfamily of [ω]<ω and since the ω-net ⟨yF ⟩ s-converges
to p, we have

δ(AF ) = 0

where A = {Fn ∈ F : yFn ̸∈ U}. In other words, for any ϵ > 0, there exists
k0 ∈ N such that

k ≥ k0 ⇒ |AF (k)|
k

=
|{Fn ∈ A : n ≤ k}|

k
< ϵ.

From the fact that yFn
̸∈ U if and only if xn ̸∈ U , it follows that

Fn ∈ A if and only if n ∈ A.

Hence

k ≥ k0 ⇒ |{n ∈ A : n ≤ k}|
k

=
|{Fn ∈ A : n ≤ k}|

k
< ϵ.

Therefore the sequence ⟨xn⟩ s-converges to p.
To prove (3), we assume that the ω-net ⟨yF ⟩ s∗-converges to p. Then for

the strictly increasing subfamily F which was constructed in (2), there exists
a subfamily A of F satisfying the following:

• δ(AF ) = 1;
• for every open neighborhood U of p there exists Fk0 ∈ F such that
Fk ⊇ Fk0

and Fk ∈ A imply yFk
∈ U .

Take A = {n ∈ N : Fn ∈ A}. Then one can prove the following by the similar
argument with (2):

• δ(A) = 1;
• for every open neighborhood U of p there exists k0 ∈ N such that
k ≥ k0 and k ∈ A imply xk ∈ U .

Therefore the sequence ⟨xn⟩ s∗-converges to p.

We can prove the following two corollaries by using Theorem 3.7.

Corollary 3.8. If a space X is sω-Fréchet, then X is s-Fréchet.

Proof. Let p ∈ A. Since X is statistically ω-Fréchet, there exists an ω-net
⟨yF ⟩ in A which s-converges to p. By Theorem 3.7 (2), we can find a sequence
⟨xn⟩ in A which s-converges to p. Therefore X is statistically Fréchet.

Corollary 3.9. Let X be a space. If for every p ∈ A, there exists an ω-net
in A which s∗-converges to p, then for every p ∈ A, there exists a sequence in
A which s∗-converges to p.

Proof. It is immediate from Theorem 3.7 (3).
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Recall that a subset A of a space X is said to be sequentially closed if a
sequence ⟨xn⟩ in A converges to p, then p belongs to A. It is well known that
a space X is sequential if and only if every sequentially closed subset of X is a
closed subset.

Definition 3.10. A subset A of a space X is said to be statistically ω-
sequentially closed provided that if an ω-net ⟨xF ⟩ in A s-converges to p, then
p belongs to A.

The following is a characterization of the statistically ω-sequential property.

Theorem 3.11. A space X is statistically ω-sequential if and only if every
statistically ω-sequentially closed subset of X is a closed subset.

Proof. (⇒) Suppose that A is a non-closed subset of a statistically ω-
sequential space X. Then there exist a point p ∈ A \ A and an ω-net ⟨xF ⟩
in A which s-converges to p. Since p ̸∈ A, A is not statistically ω-sequentially
closed.

(⇐) We prove it by the way of contraposition. Suppose that X is not
statistically ω-sequential. Then there exists a non-closed subset A of X such
that for every point p ∈ A \ A, there is no ω-net in A which s-converges to p.
Let ⟨xF ⟩ be an ω-net in A which s-converges to a point q, then it is clear that
q ∈ A, but q ̸∈ A \ A. Hence q ∈ A. Therefore A is a non-closed subset which
is statistically ω-sequentially closed.

Definition 3.12. A space X is said to be statistically ω-transitive if the
following holds for every ω-net ⟨xF ⟩ in X: if ⟨xF ⟩ s-converges to p, and for
each F ∈ [ω]<ω there is an ω-net ⟨xF,G : G ∈ [ω]<ω⟩ in X such that ⟨xF,G⟩
s-converges to xF , then there is an ω-net in {xF,G : F,G ∈ [ω]<ω} that s-
converges to p.

Finally, an equivalence between statistically ω-Fréchet and statistically ω-
sequential properties is established in the class of statistically ω-transitive
spaces.

Theorem 3.13. For any space X, the following are equivalent:

(1) X is statistically ω-Fréchet;
(2) X is statistically ω-sequential and statistically ω-transitive.

Proof. (1) ⇒ (2) By definitions, every statistically ω-Fréchet space is statis-
tically ω-sequential. We shall show that X is statistically ω-transitive. Let
⟨xF ⟩ be an ω-net in X which s-converges to p. For each F ∈ [ω]<ω, let
⟨xF,G : G ∈ [ω]<ω⟩ be an ω-net in X such that ⟨xF,G⟩ s-converges to xF .

Denote A = {xF,G : F,G ∈ [ω]<ω}. Then p ∈ A. Since X is statistically
ω-Fréchet, there exists an ω-net in A that s-converges to p.
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(2) ⇒ (1) Let p ∈ A and let L be the set of all points q in X that ⟨xF ⟩
s-converges to q for some ω-net ⟨xF ⟩ in A. Then A ⊆ L.

Claim : L is statistically ω-sequentially closed.

Let ⟨xF ⟩ be an ω-net in L that ⟨xF ⟩ s-converges to r. By the definition of
L, we can find an ω-net ⟨xF,G : G ∈ [ω]<ω⟩ in A that ⟨xF,G⟩ s-converges to
xF . Since X is statistically ω-transitive, there exists an ω-net in {xF,G : F,G ∈
[ω]<ω} (particularly, in A) that s-converges to r. So r belongs to L. Hence L
is statistically ω-sequentially closed.

Since X is statistically ω-sequential, L is a closed subset of X. Hence
p ∈ A ⊆ L = L. Thus there exists an ω-net in A that s-converges to p.
Therefore X is statistically ω-Fréchet.
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