Honam Mathematical J. 46 (2024), No. 4, pp. 567–586 https://doi.org/10.5831/HMJ.2024.46.4.567

UNIQUENESS OF ENTIRE FUNCTION SHARING TWO VALUES JOINTLY WITH ITS DIFFERENTIAL POLYNOMIALS

Goutam Haldar

Abstract. In this paper, we continue to investigate the uniqueness problem when an entire function f and its linear differential polynomial $L(f)$ share two distinct complex values CMW (counting multiplicities in the weak sense) jointly. Also, We investigate the same problem when f and its differential monomial $M(f)$ share two distinct complex values CMW. which is introduced by Lahiri in [Comput. Methods Funct. Theory, 21, 379–397 (2021)]. Our results generalize the recent result of Lahiri [Comput. Methods Funct. Theory, 21, 379–397 (2021)] to some extent.

1. Introduction, Definitions, and Results

A function analytic in the open complex plane C except possibly for poles is called meromorphic in C. If no poles occur, then the function is called entire. For a non-constant meromorphic function f defined in $\mathbb C$ and for $a \in \mathbb C$ $\mathbb{C}\cup\{\infty\}$, we denote by $E(a, f)$ the set of a-points of f counted multiplicities and $\overline{E}(a, f)$ the set of all a-points ignoring multiplicities. If for two non-constant meromorphic functions f and g, $E(a, f) = E(a, g)$, we say that f and g share the value a CM (counting multiplicities). If $\overline{E}(a, f) = \overline{E}(a, q)$, then we say that f and g are said to share the value a IM (ignoring multiplicities). Throughout the paper, the standard notations of Nevanlinna's value distribution theory of meromorphic functions [5, 16] have been adopted. A meromorphic function $a(z)$ is said to be small with respect to f provided that $T(r, a) = S(r, f)$, that is $T(r, a) = o(T(r, f))$ as $r \rightarrow \infty$, outside of a possible exceptional set of finite linear measure.

In 1976, it was shown by Rubel and Yang [14] that if an entire function f and its derivative f' share two values a, b CM, then $f = f'$. After that Gundersen [4] improved the result by considering two IM shared Values. Yang [15] also extended the result of Rubel and Yang $[14]$ by replacing f' with the

Received December 26, 2023. Accepted July 1, 2024.

²⁰²⁰ Mathematics Subject Classification. 30D35.

Key words and phrases. entire function, derivative, set sharing, uniqueness.

k-th derivative $f^{(k)}$. Since then the subject of sharing values between a meromorphic function and its derivatives has become one of the most prominent branches of the uniqueness theory. Mues and Steinmetz [13] showed that if a meromorphic function f shares three finite values IM with f' , then $f = f'$. Frank and Schwick [1] improved this result by replacing f' with $f^{(k)}$, where k is a positive integer. After that many mathematicians spent their times towards the improvements of this result (see $[2, 3, 8, 12]$). In 2000, Li and Yang $[9]$ improved the result of Yang [15] in the following.

Theorem A. [9] Let f be a non-constant entire function, k be a positive integer and a, b be distinct finite numbers. If f and $f^{(k)}$ share a and b IM, then $f = f^{(k)}$.

We now recall the notion of set sharing as follows: Let S be a subset of distinct elements of $\mathbb{C} \cup {\infty}$ and $E_f(S) = \bigcup_{a \in S} E(a, f)$ and $\overline{E}_f(S) =$ $\bigcup_{a\in S} \overline{E}(a, f)$. We say that two meromorphic functions f and g share the set S CM or IM if $E_f(S) = E_g(S)$ or $\overline{E}_f(S) = \overline{E}_g(S)$, respectively.

Using the notion of set sharing instead of value sharing, Li and Yang [10] proved the following theorem.

Theorem B. [10] Let f be a non-constant entire function and a_1 , a_2 be two distinct finite complex numbers. If f and $f^{(1)}$ share the set $\{a_1, a_2\}$ CM, then one and only one of the following holds:

- (i) $f = f^{(1)}$
- (ii) $f + f^{(1)} = a_1 + a_2$
- (iii) $f = c_1 e^{cz} + c_2 e^{-cz}$ with $a_1 + a_2 = 0$, where c, c_1 and c_2 are non-zero constants satisfying $c^2 \neq 1$ and $4c^2c_1c_2 = a_1^2(c^2 - 1)$.

In 2020, Lahiri [6] introduced a new type of set sharing notion called CMW (counting multiplicities in the weak sense)as follows:

Let f and q be two non-constant meromorphic functions in $\mathbb C$ and $a \in$ $\mathbb{C} \cup \{\infty\}$ and $B \subset \mathbb{C} \cup \{\infty\}$. We denote by $E_B(a; f, g)$ the set of those distinct a -points of f which are the b -points of g having the same multiplicity for some $b \in B$. For $A \subset \mathbb{C} \cup \{\infty\}$, we put $E_B(A; f, g) = \bigcup_{a \in A} E_B(a; f, g)$. Clearly $E_B(A; f, g) = E_B(A; g, f)$ for $A = B$. For $S \subset \mathbb{C} \cup \{\infty\}$ we define

$$
Y = \{ \overline{E}(S, f) \cup \overline{E}(S, g) \} \setminus \overline{E}_S(S, ; f, g).
$$

We say that f and q share the set S with counting multiplicities in the weak sense (CMW) if $N_Y(r, a; f) = S(r, f)$ and $N_Y(r, a; g) = S(r, g)$ for every $a \in S$, where $N_Y(r, a; f)$ denotes the counting function, counted with multiplicities of those a -points of f which lie in the set Y .

We note that f and g share the set S with counting multiplicities if and only if $Y = \emptyset$.

Lahiri [6] greatly improved Theorem B by considering the higher order derivative $f^{(k)}$ and CMW in place of CM set sharing and proved the following theorem.

Theorem C. [6] Let f be a non-constant entire function and k be a positive integer such that

(1.1)
$$
\overline{N}\left(r, \frac{f^{(k)}}{f^{(1)}}\right) = S(r, f).
$$

Suppose that a_1 and a_2 are two distinct finite complex numbers. If f and $f^{(k)}$ share the set $\{a_1, a_2\}$ CMW, then only one of the following holds:

- (i) $f = f^{(k)}$
- (ii) $f + f^{(k)} = a_1 + a_2$
- (iii) $f = c_1e^{cz} + c_2e^{-cz}$ with $a_1 + a_2 = 0$, where c, c_1 and c_2 are non-zero constants satisfying $c^{2k} \neq 1$ and $4c^{2k}c_1c_2 = a_1^2(c^{2k} - 1)$ and k is an odd positive integer.

For further investigation of the above theorem, we now define a linear differential polynomial $L(f)$ and a differential monomial $M(f)$ of an entire function f as follows:

(1.2)
$$
L(f) = b_1 f^{(1)} + b_2 f^{(2)} + \dots + b_k f^{(k)} = \sum_{j=1}^k b_j f^{(j)},
$$

where $b_1, b_2, \ldots, b_k(\neq 0)$ are complex constants, and

(1.3)
$$
M(f) = (f^{(1)})^{n_1} (f^{(2)})^{n_2} \cdots (f^{(k)})^{n_k},
$$

where k ia a positive integer and n_1, n_2, \ldots, n_k are non-negative integers, not all of them are zero. We call k and $\lambda = \sum_{j=1}^{k} n_j$, respectively the order and the degree of the monomial $M(f)$.

From the above discussion it is natural to ask the following questions.

Question 1.1. What can be said about the uniqueness when an entire function f share two values jointly CMW with its linear differential polynomial $L(f)?$

Question 1.2. What can be said about the uniqueness of an entire function f when f share two values jointly CMW with its differential monomial $M(f)$?

In the present paper, we prove the following results which will answer the above questions positively. We use a methodology which is similar to [6] but with some modifications.

2. Main results

Theorem 2.1. Let f is a non-constant entire function and $L(f)$ be a linear differential polynomial defined as in (1.2) such that

(2.1)
$$
\overline{N}\left(r, \frac{L(f)}{f^{(1)}}\right) = S(r, f).
$$

Suppose that a_1 and a_2 are two distinct finite complex numbers. If f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, then only one of the following holds:

- (i) $f = L(f)$
- (ii) $f + L(f) = a_1 + a_2$
- (iii) $f = c_1 e^{cz} + c_2 e^{-cz}$ with $a_1 + a_2 = 0$, where c, c_1 and c_2 are non-zero constants satisfying $(b_1c+b_3c^3+\cdots+b_kc^k)^2 \neq 1$ and $4(b_1c+b_3c^3+\cdots+$ $b_k c^k$)² $c_1 c_2 = a_1^2((b_1 c + b_3 c^3 + \dots + b_k c^k)^2 - 1)$ and k is an odd positive integer.

Theorem 2.2. Let f is a non-constant entire function and $M(f)$ be a differential monomial defined as in (1.3) such that

(2.2)
$$
\overline{N}\left(r, \frac{M(f)}{(f^{\lambda})(1)}\right) = S(r, f).
$$

Suppose that a_1 and a_2 are two distinct finite complex numbers. If f^{λ} and $M(f)$ share the set $\{a_1, a_2\}$ CMW, then only one of the following holds:

- (i) $f^{\lambda} = M(f)$
- (ii) $f^{\lambda} + M(f) = a_1 + a_2$
- (ii) $f^{\lambda} = c_1 e^{cz} + c_2 e^{-cz}$, $M(f) = \sqrt{A} (c_1 e^{2cz} c_2)/e^{cz}$ with $a_1 + a_2 = 0$, where A, c, c₁ and c₂ are non-zero constants and $\lambda = \sum_{j=1}^{k} n_j$.

We give the following examples in the support of the main theorems.

Example 2.1. Let $f = e^{\omega z} + a_1 + a_2$, where $\omega^k = -1$, k is a positive integer and a_1 , a_2 are any two finite distinct complex constants. and $L(f)$ = $M(f) = f^{(k)}$. Then all the conditions of Theorems 2.1 and 2.2 are satisfied. Here conclusion (ii) of Theorems 2.1 and 2.2 holds.

Example 2.2. Let $f = e^{\lambda z}$, where $\lambda^5 = 1$ and $L(f) = M(f) = f^{(5)}$. Then all the conditions of the above two theorems are satisfied and conclusion (i) of the above two theorems holds.

Remark 2.1. By taking $L(f) = f^{(k)}$ in Theorem 2.1, we get Theorem C, which is a particular case of our result.

3. Key lemmas

In this section, we present some necessary lemmas which will be required to prove the main results.

Lemma 3.1. Let f be a non-constant entire function and a_1 , a_2 be two distinct finite complex numbers. If f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, then $S(r, L(f)) = S(r, f)$.

Proof. Since f is entire, we have

(3.1)
$$
T(r, L(f)) = m(r, L(f)) \le m\left(r, \frac{L(f)}{f}\right) + m(r, f)
$$

$$
\le T(r, f) + S(r, f).
$$

Again since f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, we get by second fundamental theorem

(3.2)
$$
T(r, f) \leq \overline{N}\left(r, \frac{1}{f-a_1}\right) + \overline{N}\left(r, \frac{1}{f-a_2}\right) + S(r, f)
$$

$$
\leq 2T(r, L(f)) + S(r, f).
$$

From 3.1 and 3.2, we conclude that $S(r, L(f)) = S(r, f)$. This proves the lemma. \Box

Lemma 3.2. Let f be a non-constant entire function and a_1 , a_2 be two distinct finite complex numbers. If f^{λ} and $M(f)$, where $\lambda = \sum_{j=1}^{k} n_j$ and $M(f)$ is defined as in (1.3) share the set $\{a_1, a_2\}$ CMW, then $S(r, M(f)) = S(r, f)$.

Proof. The proof of the lemma can be carried out in the line of the proof of Lemma 3.1. So, we omit the details. \Box

Lemma 3.3. [11, 16] Let f be a non-constant meromorphic function and $R(f) = P(f)/Q(f)$, where $P(f) = \sum_{k=0}^{p} a_k f^k$ and $Q(f) = \sum_{j=0}^{q} b_j f^j$ are two mutually prime polynomials in f. If $T(r, a_k) = S(r, f)$ and $T(r, b_j) = S(r, f)$ for $k = 0, 1, 2, ..., p$ and $j = 0, 1, 2, ..., q$ and $a_p \neq 0, b_q \neq 0$, then $T(r, R(f)) =$ $max{p, q}T(r, f) + S(r, f).$

Lemma 3.4. [7] The coefficients $a_0(\neq 0), a_1, \ldots, a_{n-1}$ of the differential equation $f^{(n)} + a_{n-1}f^{(n-1)} + \cdots + a_1f^{(1)} + a_0f = 0$ are polynomials if and only if all solutions of it are entire functions of finite order .

Lemma 3.5. Let f be a non-constant entire function and a_1, a_2 be two non-zero distinct finite numbers. If f and $L(f)$ $(k \ge 1)$ share the set $\{a_1, a_2\}$ CMW and $T(r, h) \neq S(r, f)$, where

(3.3)
$$
h = \frac{(L(f) - a_1)(L(f) - a_2)}{(f - a_1)(f - a_2)},
$$

then the following fold:

(i) $\Psi \not\equiv 0$ and $T(r, \Psi) = S(r, f)$, where

(3.4)
$$
\Psi = \frac{(f^{(1)}h - L^{(1)}(f))(f^{(1)}h + L^{(1)}(f))}{(L(f) - a_1)(L(f) - a_2)}.
$$

(ii)
$$
T(r, L(f)) = N\left(r, \frac{1}{L(f) - a_j}\right) + S(r, f)
$$
 for $j = 1, 2$.
\n(iii) $m\left(r, \frac{1}{f - c}\right) = S(r, f)$, where $c \neq a_1, a_2 \in \mathbb{C}$.
\n(iv)

$$
T(r,h) = m\left(r, \frac{1}{f-a_1}\right) + m\left(r, \frac{1}{f-a_2}\right) + S(r, f)
$$

$$
= m\left(r, \frac{1}{f^{(1)}}\right) + S(r, f) \le m\left(r, \frac{1}{L(f)}\right) + S(r, f).
$$

(v)
$$
2T(r, f) - 2T(r, L(f)) = m\left(r, \frac{1}{h}\right) + S(r, f).
$$

Proof. Since f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, $N(r, h) + N(r, 1/h) =$ $S(r, f)$. Now if $\Psi \equiv 0$, then $h = \pm L^{(1)}(f)/f^{(1)}$. This implies that $T(r, h)$ $S(r, f)$, which contradicts to our assumption. Therefore $\Psi \neq 0$.

Let z_0 be a zero of $(L(f)-a_1)(L(f)-a_2)$ and $(f-a_1)(f-a_2)$ of multiplicity $p(\geq 2)$. Then z_0 is a zero of $(f^{(1)}h - L^{(1)})(f^{(1)}h + L^{(1)})$ with multiplicity $2(p-1) \geq p$. So, z_0 is not a pole of Ψ .

From (3.3) , we get

(3.5)
$$
(L(f) - a_1)(L(f) - a_2) = h(f - a_1)(f - a_2).
$$

Differentiating (3.5), we obtain

(3.6)
$$
L^{(1)}(f)(2L(f) - a_1 - a_2) = h^{(1)}(f - a_1)(f - a_2) + hf^{(1)}(2f - a_1 - a_2).
$$

Let z_0 be a simple zero of $(L(f) - a_1)(L(f) - a_2)$ and $(f - a_1)(f - a_2)$. Then

$$
2L(f)(z_1) - a_1 - a_2 = \pm (2f(z_1) - a_1 - a_2).
$$

So from (3.6), we get

$$
(h(z1)f(1)(z1) – (L(f)(z1))2)(h(z1)f(1)(z1) + (L(f)(z1))2) = 0.
$$

Hence from (3.4), we see that z_1 is not a pole of Ψ . Since f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, we obtain $N(r, \Psi) = S(r, f)$.

By (3.3) , we get

(3.7)
$$
\frac{f^{(1)}h - L^{(1)}(f)}{L(f) - a_1} = \frac{f^{(1)}L(f)}{(f - a_1)(f - a_2)} - \frac{a_2f^{(1)}}{(f - a_1)(f - a_2)} - \frac{L^{(1)}(f)}{L(f) - a_1}.
$$

Since

$$
\frac{a_2 f^{(1)}}{(f-a_1)(f-a_2)} = \frac{1}{a_1-a_2} \left(\frac{f^{(1)}}{f-a_1} - \frac{f^{(1)}}{f-a_2} \right),
$$

we get from (3.7) that

$$
m\left(r, \frac{f^{(1)}h - L^{(1)}(f)}{L(f) - a_1}\right) = S(r, f).
$$

Similarly,

$$
m\left(r, \frac{f^{(1)}h + L^{(1)}(f)}{L(f) - a_2}\right) = S(r, f).
$$

Therefore, from (3.4) we obtain $m(r, \Psi) = S(r, f)$ and hence $T(r, \Psi) = S(r, f)$, which is (i) .

Now in view of (3.3), we get from (3.4) that

$$
\frac{1}{f^{(1)}h - L^{(1)}(f)} = \frac{1}{\Psi} \left(\frac{f^{(1)}}{(f - a_1)(f - a_2)} + \frac{L^{(1)}(f)}{(L(f) - a_1)(L(f) - a_2)} \right)
$$

Therefore,

$$
m\left(r, \frac{1}{f^{(1)}h - L^{(1)}(f)}\right) = S(r, f).
$$

Similarly, we get

$$
m\left(r,\frac{1}{f^{(1)}h+L^{(1)}(f)}\right)=S(r,f).
$$

So we obtain

$$
m\left(r, \frac{1}{L(f) - a_1}\right) \le m\left(r, \frac{f^{(1)}h - L^{(1)}(f)}{L(f) - a_1}\right) + m\left(r, \frac{1}{f^{(1)}h - L^{(1)}(f)}\right)
$$

= $S(r, f)$

and $m\left(r,\frac{1}{\tau(f)}\right)$ $L(f) - a_2$ $= S(r, f)$. Therefore,

$$
T(r, L(f)) = N\left(r, \frac{1}{L(f) - a_j}\right) + S(r, f),
$$

for $j = 1, 2$, which is (ii) .

for $c \neq a_1, a_2$, we get from (3.7)

$$
\frac{f^{(1)}h - L^{(1)}(f)}{(L(f) - a_1)(f - c)} = \frac{f^{(1)}L(f)}{(f - c)(f - a_1)(f - a_2)} - \frac{a_2 f^{(1)}}{(f - c)(f - a_1)(f - a_2)} - \frac{L^{(1)}(f)}{(L(f) - a_1)(f - c)}.
$$

We note that

$$
\frac{a_2 f^{(1)}}{(f-c)(f-a_1)(f-a_2)} = \alpha \frac{f^{(1)}}{f-c} + \beta \frac{f^{(1)}}{f-a_1} + \gamma \frac{f^{(1)}}{f-a_2},
$$

.

where $\alpha = \frac{a_2}{\sqrt{a_2^2+a_1^2}}$ $\frac{a_2}{(a_1-c)(a_2-c)}, \ \beta = \frac{a_2}{(c-a_1)(c)}$ $\frac{a_2}{(c-a_1)(a_2-a_1)}$ and $\gamma = \frac{a_2}{(c-a_2)(c_2-a_2)}$ $\frac{a_2}{(c-a_2)(a_1-a_2)}$. Therefore, we get $\int f^{(1)}h - L^{(1)}(f)$ $).$

$$
m\left(r,\frac{f^{(r)}(f-L^{(r)}(f))}{(f-c)(L(f)-a_1)}\right)=S(r,f)
$$

Since by (3.4),

$$
\frac{1}{f-c} = \frac{1}{\Psi} \frac{f^{(1)}h - L^{(1)}(f)}{(f-c)(L(f) - a_1)} \frac{f^{(1)}h + L^{(1)}(f)}{(L(f) - a_2)},
$$

we get

$$
m\left(r, \frac{1}{f-c}\right) = S(r, f),
$$

which is (iii) . Since

$$
h = \frac{(L(f))^2 - (a_1 + a_2)L(f) + a_1 a_2}{(f - a_1)(f - a_2)}, \text{ we have}
$$

$$
T(r, h) = m(r, h) + S(r, f) \le m\left(r, \frac{1}{(f - a_1)(f - a_2)}\right) + S(r, f)
$$

$$
\le m\left(r, \frac{1}{f^{(1)}}\right) + m\left(r, \frac{f^{(1)}}{(f - a_1)(f - a_2)}\right) + S(r, f)
$$

(3.8)
$$
\leq m \left(r, \frac{1}{f^{(1)}}\right) + m \left(r, \frac{f^{(1)}}{(f - a_1)(f - a_2)}\right) + S(r, f)
$$

$$
\leq m \left(r, \frac{1}{f^{(1)}}\right) + S(r, f).
$$

Since

$$
\frac{\Psi}{f^{(1)}} = \frac{f^{(1)}}{(f-a_1)(f-a_2)} \frac{(L(f))^2 - (a_1+a_2)L(f) + a_1a_2}{(f-a_1)(f-a_2)} - \frac{L^{(1)}(f)}{f^{(1)}} \frac{L^{(1)}(f)}{(L(f) - a_1)(L(f) - a_2)},
$$

we get by (i) that

(3.9)

$$
m\left(r, \frac{1}{f^{(1)}}\right) \leq m\left(r, \frac{\Psi}{f^{(1)}}\right) + S(r, f)
$$

$$
\leq m\left(r, \frac{1}{(f-a_1)(f-a_2)}\right) + S(r, f).
$$

Since
$$
\frac{1}{(f-a_1)(f-a_2)} = \frac{h}{(L(f)-a_1)(L(f)-a_2)}
$$
, we have by (ii) that
(3.10) $m\left(r, \frac{1}{(f-a_1)(f-a_2)}\right) \le T(r, h) + S(r, f)$.
From (3.8), (3.9) and (3.10), we have

$$
T(r,h) = m\left(r, \frac{1}{f-a_1}\right) + m\left(r, \frac{1}{f-a_2}\right) + S(r,f) \le m\left(r, \frac{1}{L(f)}\right) + S(r,f),
$$

which is (iv).

Keeping in view of (3.3) , we get from (ii) and (iv) that

$$
2T(r, L(f)) = N\left(r, \frac{1}{L(f) - a_1}\right) + N\left(r, \frac{1}{L(f) - a_2}\right) + S(r, f)
$$

\n
$$
= N\left(r, \frac{1}{(L(f) - a_1)(L(f) - a_2)}\right) + S(r, f)
$$

\n
$$
= N\left(r, \frac{1}{h(f - a_1)(f - a_2)}\right) + S(r, f)
$$

\n
$$
= 2T(r, f) - m\left(r, \frac{1}{f - a_1}\right) - m\left(r, \frac{1}{f - a_2}\right) + N\left(r, \frac{1}{h}\right)
$$

\n
$$
+ S(r, f)
$$

\n
$$
= 2T(r, f) - T(r, h) + N\left(r, \frac{1}{h}\right) + S(r, f).
$$

Therefore, $2T(r, f) - 2T(r, L(f)) = m(r, \frac{1}{r})$ $+ S(r, f)$, which is (v). This h \Box completes the proof of the lemma.

Lemma 3.6. Let f be a non-constant entire function and a_1 , a_2 be two distinct finite complex numbers. If f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, then $T(r, h) = S(r, f)$, where h is defined in Lemma 3.5.

Proof. Since f and $L(f)$ share the set $\{a_1, a_2\}$ CMW, we must have $N(r, h)$ = $S(r, f)$ and $N(r, 1/h) = S(r, f)$. Assume on the contrary that $T(r, h) \neq S(r, f)$. By Lemma 3.5, we know that $\Psi \not\equiv 0$ and $T(r, \Psi) = S(r, f)$.

Differentiating (3.3), we get

(3.11)
$$
2L(f)L^{(1)}(f) - (a_1 + a_2)L^{(1)}(f) = (2ff^{(1)} - (a_1 + a_2)f^{(1)})h + h^{(1)}(f - a_1)(f - a_2).
$$

From (3.3) and (3.11) , we obtain

$$
\frac{(2L(f)-(a_1+a_2))L^{(1)}(f)}{(L(f)-a_1)(L(f)-a_2)}=\frac{(2f-(a_1+a_2))f^{(1)}}{(f-a_1)(f-a_2)}+\frac{h^{(1)}}{h}.
$$

Squaring the above equation, we get

$$
\frac{((2L(f) - (a_1 + a_2))^2 (L^{(1)}(f))^2}{(L(f) - a_1)^2 (L(f) - a_2)^2}
$$

=
$$
\frac{((2f - (a_1 + a_2)))^2 (f^{(1)})^2}{(f - a_1)^2 (f - a_2)^2} + \beta^2 + \frac{2\beta (2f - (a_1 + a_2)) f^{(1)}}{(f - a_1)(f - a_2)},
$$

where $\beta = h^{(1)}/h$.

Eliminating $L^{(1)}(f)$ from (3.3), (3.4) and the above equation, we get

$$
\frac{(2L(f) - (a_1 + a_2))^2 \Psi}{(L(f) - a_1)(L(f) - a_2)} = \frac{4(L(f) + f - (a_1 + a_2))(L(f) - f)(f^{(1)})^2}{(f - a_1)^2 (f - a_2)^2} - \beta^2
$$
\n(3.12)\n
$$
-\frac{2\beta(2f - (a_1 + a_2))f^{(1)}}{(f - a_1)(f - a_2)}.
$$

Let z_0 be a zero of $(f-a_1)(f-a_2)$ which is also a zero of $(L(f)-a_1)(L(f)-a_2)$. Since f and $L(f)$ share the set $\{a_1, a_2\}$ CMW and $T(r, \beta) = S(f)$, almost all the poles of right hand side of (3.12) are simple, and hence it follows from the same equation that "almost all" the zeros of $(L(f) - a_1)(L(f) - a_2)$ are simple as long as they are not the zeros of Ψ . Thus

(3.13)
$$
N\left(r, \frac{1}{L(f) - a_j}\right) = \overline{N}\left(r, \frac{1}{L(f) - a_j}\right) + S(r, f), j=1, 2.
$$

Differentiating (3.4), we get

$$
2h^{2} f^{(1)}(f^{(2)} + \beta f^{(1)}) - 2L^{(1)}(f)L^{(2)}(f) = \Psi^{(1)}(L(f) - a_{1})(L(f) - a_{2}) + \Psi(2L(f) - (a_{1} + a_{2}))L^{(1)}(f).
$$

Now eliminating h from the above equation by using (3.4) , we get

$$
\[2\Psi(f^{(2)} + \beta f^{(1)}) - f^{(1)}\Psi^{(1)}\] (L(f) - a_1)(L(f) - a_2) =
$$

(3.14)
$$
L^{(1)} \left[2f^{(1)}\Psi L - (a_1 + a_2)f^{(1)}\Psi - 2(\beta f^{(1)} + f^{(2)})L^{(1)} + 2f^{(1)}L^{(2)}\right].
$$

From the above equation, we see that any simple zeros of $(L(f)-a_1)(L(f)-a_2)$ must be the zeros of $2f^{(1)}\Psi L(f) - (a_1 + a_2)f^{(1)}\Psi - 2(\beta f^{(1)} + f^{(2)})L^{(1)}(f) +$ $2f^{(1)}L^{(2)}(f).$

Let

$$
\Psi_1 = (3.15) \frac{2f^{(1)}\Psi L(f) - (a_1 + a_2)f^{(1)}\Psi - 2(\beta f^{(1)} + f^{(2)})L^{(1)}(f) + 2f^{(1)}L^{(2)}(f)}{(f - a_1)(f - a_2)}.
$$

Since f and $L(f)$ share the set $\{a_1, a_2\}$ CMW and "almost all" the zeros of $(L(f) - a_1)(L(f) - a_2)$ are simple, we must have $N(r, \Psi_1) = S(r, f)$.

On the hand, by the lemma of logarithmic derivative, it can be easily seen that $m(r, \Psi_1) = S(r, f)$. Hence, $T(r, \Psi_1) = S(r, f)$.

We now consider the following two cases:

Case 1: $\Psi_1 \not\equiv 0$. Then it follows from (3.15) that

$$
2T(r, f) = T(r, (f - a_1)(f - a_2)) + S(r, f)
$$

= $m(r, (f - a_1)(f - a_2)) + S(r, f)$
 $\leq m(r, (f - a_1)(f - a_2)\Psi_1) + m\left(r, \frac{1}{\Psi_1}\right) + S(r, f)$
 $\leq m(r, f^{(1)}) + m(r, L(f)) + T(r, \Psi_1) + S(r, f)$
 $\leq T(r, f) + T(r, L(f)) + S(r, f).$

Therefore, $T(r, f) \leq T(r, L(f)) + S(r, f)$.

Since $L(f)$ is a linear differential polynomial in f, we get

$$
T(r, L(f)) \leq T(r, f) + S(r, f).
$$

Combining the above two we have $T(r, f) = T(r, L(f)) + S(r, f)$.

By Lemma 3.5 (ii) and (3.13) , we get

$$
2T(r, f) = \overline{N}\left(r, \frac{1}{f - a_1}\right) + \overline{N}\left(r, \frac{1}{f - a_2}\right) + S(r, f),
$$

which implies that

$$
m\left(r, \frac{1}{f-a_1}\right) + m\left(r, \frac{1}{f-a_2}\right) = S(r, f).
$$

Thus from (3.3), the lemma of logarithmic derivative and the above observation, we get

$$
T(r,h) = N(r,h) + m(r,h)
$$

\n
$$
\leq m\left(r, \frac{(L(f))^2}{(f-a_1)(f-a_2)}\right) + m\left(r, \frac{a_1a_2}{(f-a_1)(f-a_2)}\right)
$$

\n
$$
+2m\left(r, \frac{L(f)}{(f-a_1)(f-a_2)}\right) + S(r,f) = S(r,f).
$$

i.e., $T(r, h) = S(r, f)$, which contradicts to our assumption.

Case 2: $\Psi_1 \equiv 0$. Then from (3.14) and (3.15), we obtain

$$
\frac{\Psi^{(1)}}{\Psi} = 2\left(\frac{h^{(1)}}{h} + \frac{f^{(2)}}{f^{(1)}}\right).
$$

Integrating above, we get

(3.16)
$$
(hf^{(1)})^2 = c\Psi,
$$

where c is a non-zero constant.

It follows from (3.4) and (3.16) that

$$
(L^{(1)}(f))^2 = -(L(f))^2 - (a_1 + a_2)L(f) + (a_1a_2 - c))\Psi
$$

= -(L(f) - d₁)(L(f) - d₂)\Psi,

where d_1 and d_2 are two complex constants. If $d_1 \neq d_2$, then by the lemma of logarithmic derivative, we get

$$
m\left(r, \frac{1}{L^{(1)}(f)}\right) = m\left(r, \frac{-L^{(1)}(f)}{(L(f) - d_1)(L(f) - d_2)}\right) = S(r, f).
$$

Therefore,

$$
m\left(r, \frac{1}{(f-a_1)(f-a_2)}\right) \leq m\left(r, \frac{L^{(1)}(f)}{(f-a_1)(f-a_2)}\right) + m\left(r, \frac{1}{L^{(1)}(f)}\right) = S(r, f).
$$

Hence, in view of the above, we get from (3.3) and the lemma of logarithmic derivative

$$
T(r,h) = N(r,h) + m(r,h)
$$

\n
$$
\leq m\left(r, \frac{(L(f))^2}{(f-a_1)(f-a_2)}\right) + m\left(r, \frac{L(f)}{(f-a_1)(f-a_2)}\right)
$$

\n
$$
+ m\left(r, \frac{1}{(f-a_1)(f-a_2)}\right) + S(r,f)
$$

\n
$$
= S(r,f),
$$

which contradicts to our assumption.

Therefore, $d_1 = d_2 = (a_1 + a_2)/2 = d$, say. Hence,

(3.17)
$$
(L^{(1)}(f))^2 = -\Psi(L(f) - d)^2.
$$

From (3.3), (3.16) and (3.17), we get

(3.18)
$$
(L(f) - d)(L(f) - a_1)(L(f) - a_2) = c_2(f - a_1)(f - a_2)\Psi_2
$$
,
where c_2 is a non-zero constant satisfying $c_2^2 = -c$ and $\Psi_2 = L^{(1)}(f)/f^{(1)}$.

From (3.16), it can be easily seen that $N(r, 1/f⁽¹⁾) = S(r, f)$. Therefore, $N(r, \Psi_2) = S(r, f)$. On the other hand, by the lemma of logarithmic derivative, we have $m(r, \Psi_2) = S(r, f)$, and hence $T(r, \Psi_2) = S(r, f)$.

Since $\Psi_2 \not\equiv 0$, it follow from (3.18) that

(3.19)
$$
3T(r, L(f)) = 2T(r, f) + S(r, f).
$$

Let

(3.20)
$$
\Psi_3 = \frac{L^{(1)}(f)}{L(f) - d}.
$$

Then from (3.17), we get $\Psi_3^2 = -\Psi$. Hence, $T(r, \Psi_3) = S(r, f)$ and $\Psi_3 \equiv 0$. Now from (3.3) and (3.11) , we get

$$
(3.21) (f-d)hf^{(1)} = (L(f) - d)^{2}\Psi_{3} - \frac{1}{2}\beta(L(f) - a_{1})(L(f) - a_{2}).
$$

By (3.16) , we get

$$
T(r, hf^{(1)}) = S(r, f).
$$

Therefore, by (3.21), we obtain

(3.22)
$$
T(r, f) = T(r, L(f)), \text{ or } T(r, f) = 2T(r, L(f)) + S(r, f)
$$

according as when $\Psi_3 = \beta/2$ or not.

Combining (3.19) and (3.22), we get $T(r, f) = S(r, f)$, which is a contradiction.

Hence $T(r, h) = S(r, f)$. This completes the proof of the lemma. \Box

Lemma 3.7. Let f be a non-constant entire function and a_1, a_2 be two non-zero distinct finite numbers. If f^{λ} and $M(f)$ $(k \ge 1)$ share the set $\{a_1, a_2\}$ CMW and $T(r, h_1) \neq S(r, f)$, where

(3.23)
$$
h_1 = \frac{(M(f) - a_1)(M(f) - a_2)}{(f^{\lambda} - a_1)(f^{\lambda} - a_2)},
$$

then the following fold:

(i) $\Phi \not\equiv 0$ and $T(r, \Phi) = S(r, f)$, where

$$
(3.24) \qquad \Phi = \frac{((f^{\lambda})(^{1)}h_1 - (M(f))^{(1)})((f^{\lambda})(^{1)}h_1 + (M(f))^{(1)})}{(M(f) - a_1)(M(f) - a_2)}.
$$

(ii)
$$
T(r, M(f)) = N\left(r, \frac{1}{M(f) - a_j}\right) + S(r, f)
$$
 for $j = 1, 2$.
\n(iii) $m\left(r, \frac{1}{f^{\lambda} - c}\right) = S(r, f)$, where $c \neq a_1, a_2 \in \mathbb{C}$.
\n(iv)

$$
T(r, h_1) = m\left(r, \frac{1}{f^{\lambda} - a_1}\right) + m\left(r, \frac{1}{f^{\lambda} - a_2}\right) + S(r, f)
$$

$$
= m\left(r, \frac{1}{(f^{\lambda})(1)}\right) + S(r, f) \le m\left(r, \frac{1}{M(f)}\right) + S(r, f).
$$

(v)
$$
2\lambda T(r, f) - 2T(r, M(f)) = m\left(r, \frac{1}{h_1}\right) + S(r, f).
$$

Proof. The proof of this lemma can be carried out in a similar manner as done in the proof of Lemma 3.5. So, we omit the details. \Box

Lemma 3.8. Let f be a non-constant entire function and a_1 , a_2 be two distinct finite complex numbers. If f^{λ} and $M(f)$ share the set $\{a_1, a_2\}$ CMW, then $T(r, h_1) = S(r, f)$, where h_1 is defined in Lemma 3.7.

Proof. The proof of this lemma is essentially can be done in a similar manner as Lemma 3.6. So, we omit the details. \Box

4. Proof of the main results

Proof of Theorem 2.1. Let 2η be the principal branch of log h, where h is defined as in Lemma 3.5. Then by Lemma 3.6, we obtain

$$
T(r, e^{\eta}) = \frac{1}{2}T(r, h) + S(r, f) = S(r, f).
$$

Also (3.3) can be written as

(4.1)
$$
(L(f) - a_1)(L(f) - a_2) = e^{2\eta}(f - a_1)(f - a_2).
$$

And so

(4.2)
$$
GH = \left(\frac{a_1 - a_2}{2}\right)^2 (e^{2\eta} - 1),
$$

where

$$
G = e^{\eta} f - \frac{a_1 + a_2}{2} e^{\eta} + L(f) - \frac{a_1 + a_2}{2}
$$

and

$$
H = e^{\eta} f - \frac{a_1 + a_2}{2} e^{\eta} - L(f) + \frac{a_1 + a_2}{2}.
$$

If $e^{2\eta} \equiv 1$, then from (4.1), we get

$$
(f - L(f))(f + L(f) - a_1 - a_2) = 0,
$$

which implies that either $f = L(f)$, or $f + L(f) = a_1 + a_2$.

Now suppose that $e^{2\eta} \neq 1$. Since f is entire we get $N(r, G) + N(r, H) =$ $S(r, f)$, and so, from (4.2), we get $N(r, 1/H) + N(r, 1/G) = S(r, f)$. Therefore,

(4.3)
$$
T\left(r, \frac{G^{(j)}}{G}\right) + T\left(r, \frac{H^{(j)}}{H}\right) = S(r, f),
$$

where $j = 1, 2, \ldots, k$.

Suppose $f^{(1)} = bL(f)$. Then using the condition (1.1), the lemma of logarithmic derivative, and the first fundamental theorem of Nevalinna, it is easily seen that $T(r, b) = S(r, f)$.

From the definition of G and H it follows that

(4.4)
$$
G + H = e^{\eta} (2f - a_1 - a_2)
$$

and

(4.5)
$$
G - H = 2L(f) - a_1 - a_2 = 2\lambda f^{(1)} - a_1 - a_2,
$$

where $b\lambda = 1$ and $T(r, \lambda) = S(r, f)$ as $T(r, b) = S(r, f)$.

Eliminating f and $f^{(1)}$, from (4.4) and (4.5), we get

(4.6)
$$
\left(e^{\eta} + \lambda \eta^{(1)} - \lambda \frac{G^{(1)}}{G}\right)G + \left(\lambda \eta^{(1)} - e^{\eta} - \lambda \frac{H^{(1)}}{H}\right)H
$$

$$
+b(a_1 + a_2) = 0.
$$

Now eliminating H from (4.2) and (4.6) , we obtain

(4.7)
$$
\Phi_1 G^2 + \Phi_2 G + \Phi_3 = 0,
$$

where

(4.8)
$$
\Phi_1 = e^{\eta} + \lambda \eta^{(1)} - \lambda \frac{G^{(1)}}{G},
$$

(4.9)
$$
\Phi_2 = \lambda \eta^{(1)} - e^{\eta} - \lambda \frac{H^{(1)}}{H} \left(\frac{a_1 - a_2}{2} \right)^2 (e^{2\eta} - 1),
$$

(4.10)
$$
\Phi_3 = \lambda (a_1 + a_2).
$$

If $\Phi_1 \neq 0$ or $\Phi_2 \neq 0$, then by Lemma 3.2, we see from (4.7) that $T(r, G)$ = $S(r, f)$, and therefore from (4.4), we get $T(r, f) = S(r, f)$, which is a contradiction. Therefore, $\Phi_1 = \Phi_2 = 0$. Then from (4.7), we get $\Phi_3 = 0$. This implies that

(4.11)
$$
e^{\eta} + \lambda \eta^{(1)} - \lambda \frac{G^{(1)}}{G} = 0,
$$

(4.12)
$$
\lambda \eta^{(1)} - e^{\eta} - \lambda \frac{H^{(1)}}{H} = 0,
$$

(4.13) $a_1 + a_2 = 0.$

Adding (4.11) and (4.12) , we get

$$
\frac{G^{(1)}}{G} + \frac{H^{(1)}}{H} = 2\eta^{(1)},
$$

and so by integration , we have

(4.14)
$$
GH = c_0 e^{2\eta},
$$

where c_0 is a non-zero constant.

Now from (4.2), (4.13) and (4.14), we get $e^{2\eta} = A$, where A is a constant. From (4.4) , (4.5) and (4.13) , we get

(4.15)
$$
\left(\sqrt{A} - \sum_{j=1}^{k} b_j \frac{G^{(j)}}{G}\right) G^2 = \left(\sqrt{A} + \sum_{j=1}^{k} b_j \frac{H^{(j)}}{H}\right) B,
$$

where $B = (a_1 - a_2)^2/4(A - 1)$, constant.

If $\sqrt{A} - \sum_{j=1}^{k} b_j G^{(j)}/G \neq 0$, then from (4.3) and (4.15), we get $T(r, G) =$ $S(r, f)$ and so from (4.14), we get $T(r, F) = S(r, f)$. Therefore, from (4.4), we get $T(r, f) = S(r, f)$, which is a contradiction. hence we have $\sum_{j=1}^{k} b_j G^{(j)} - \sqrt{AG} = 0$ and $\sum_{j=1}^{k} b_j H^{(j)} + \sqrt{AH} = 0$. This implies by Lemma 3.4 that G $AH = 0$. This implies by Lemma 3.4 that G and H are of finite order. Also from (4.14) , we see that G and H do not assume the value 0.

Therefore, let us assume that $G = e^P$ and $H = e^Q$, where P, Q are polynomials of degree p and q , respectively. Differentiating j times, we obtain $G^{(j)} = P_j e^P$ and $H^{(j)} = Q_j e^Q$, where P_j and Q_j are polynomials of degree $(p-1)j$ and $(q-1)j$, respectively. Since $\sum_{j=1}^{k} b_j G^{(j)} = \sqrt{2}$ AG and $\sum_{j=1}^k b_j H^{(j)} = \sqrt{\frac{\sum_{j=1}^k b_j}{n}}$ AH, we have $p = q = 1$. Hence in view of (4.14), we may write $G = 2d_1e^{cz}$ and $H = 2d_2e^{-cz}$, where c, d_1 , d_2 are non-zero constants.

Now from (4.4) and (4.13) , we get

(4.16)
$$
f = c_1 e^{cz} + c_2 e^{-cz},
$$

where $c_1 = d_1/$ A and $c_2 = d_2/$ A.

Differentiating (4.16), we have

$$
f^{(j)} = \frac{c_1 c^j e^{2cz} + c_2 (-c)^j}{e^{cz}},
$$

where $j = 1, 2, \ldots, k$. Therefore,

(4.17)
$$
L(f) = \frac{\sum_{j=1}^{k} b_j (c_j c^j e^{2cz} + c_2 (-c)^j)}{e^{cz}}.
$$

Again from (4.5) and (4.13) , we get

(4.18)
$$
L(f) = \frac{\sqrt{A}(c_1e^{2cz} - c_2)}{e^{cz}}.
$$

Comparing (4.17) and (4.18) , we obtain

(4.19)
$$
b_1c + b_2c^2 + \dots + b_kc^k = \sqrt{A}
$$

and

(4.20)
$$
-b_1c + b_2c^2 - \dots + (-1)^k b_k c^k = -\sqrt{A}.
$$

from (4.19) and (4.20), it is clear that $A = (b_1c + b_3c^3 + \cdots + b_kc^k)^2$, where k is an odd positive integer.

Now from (4.2) and (4.13), we see that $4d_1d_2 = a_1^2(A-1)$ and so

$$
4c_1c_2A = a_1^2(A - 1),
$$

where $A = (b_1c + b_3c^3 + \cdots + b_kc^k)^2$, where k is an odd positive integer. This completes the proof of the Theorem 2.1. \Box

Proof of Theorem 2.2. Let 2ξ be the principal branch of log h_1 , where h_1 is defined as in 3.23. Then by Lemma 3.8, we obtain

$$
T(r, e^{\xi}) = \frac{1}{2}T(r, h_1) + S(r, f) = S(r, f).
$$

Also (3.23) can be written as

(4.21)
$$
(M(f) - a_1)(M(f) - a_2) = e^{2\xi}(f - a_1)(f - a_2),
$$

and so

(4.22)
$$
G_1 H_1 = \left(\frac{a_1 - a_2}{2}\right)^2 (e^{2\xi} - 1),
$$

where

$$
G_1 = e^{\xi} f^{\lambda} - \frac{a_1 + a_2}{2} e^{\xi} + M(f) - \frac{a_1 + a_2}{2}
$$

and

$$
H_1 = e^{\xi} f - \frac{a_1 + a_2}{2} e^{\xi} - M(f) + \frac{a_1 + a_2}{2}.
$$

If $e^{2\xi} \equiv 1$, then from (4.21), we get

$$
(f^{\lambda} - M(f))(f^{\lambda} + M(f) - a_1 - a_2) = 0,
$$

which implies that either $f^{\lambda} = M(f)$, or $f^{\lambda} + M(f) = a_1 + a_2$.

Now suppose that $e^{2\xi} \neq 1$. Since f is entire we get $N(r, G_1) + N(r, H_1) =$ $S(r, f)$, and so, from (4.22), we get $N(r, 1/H_1) + N(r, 1/G_1) = S(r, f)$. Therefore,

(4.23)
$$
T\left(r, \frac{G_1^{(j)}}{G_1}\right) + T\left(r, \frac{H_1^{(j)}}{H_1}\right) = S(r, f),
$$

where $j = 1, 2, \ldots, k$.

Suppose $(f^{\lambda})^{(1)} = b_1 M(f)$. Then using the condition (2.2), the Lemma of logarithmic derivative, and the first fundamental theorem of Nevalinna, it is easily seen that $T(r, b_1) = S(r, f)$.

From the definition of G_1 and H_1 it follows that

(4.24)
$$
G_1 + H_1 = e^{\xi} (2f^{\lambda} - a_1 - a_2)
$$

and

(4.25)
$$
G_1 - H_1 = 2M(f) - a_1 - a_2 = 2\mu(f^{\lambda})(1) - a_1 - a_2,
$$

where $b\mu = 1$ and so $T(r, \mu) = S(r, f)$ as $T(r, b) = S(r, f)$.

Eliminating f^{λ} and $(f^{\lambda})^{(1)}$ from (4.24) and (4.25), we obtain

$$
\begin{pmatrix} e^{\xi} + \mu \xi^{(1)} - \mu \frac{G_1^{(1)}}{G_1} \end{pmatrix} G_1 + \left(\mu \xi^{(1)} - e^{\xi} - \mu \frac{H_1^{(1)}}{H_1} \right) H_1
$$

(4.26)
$$
+b_1(a_1 + a_2) = 0.
$$

Now eliminating H_1 from (4.22) and (4.26), we obtain

(4.27)
$$
\chi_1 G^2 + \chi_2 G + \chi_3 = 0,
$$

where

(4.28)
$$
\chi_1 = e^{\xi} + \mu \xi^{(1)} - \mu \frac{G_1^{(1)}}{G_1},
$$

(4.29)
$$
\chi_2 = \mu \xi^{(1)} - e^{\xi} - \mu \frac{H_1^{(1)}}{H_1} \left(\frac{a_1 - a_2}{2} \right)^2 (e^{2\xi} - 1),
$$

(4.30) χ³ = µ(a¹ + a2).

If $\chi_1 \not\equiv 0$ or $\chi_2 \not\equiv 0$, then by Lemma 3.2, we get from (4.27) that $T(r, G_1)$ $S(r, f)$, and so from (4.22), we get $T(r, H_1) = S(r, f)$. So, from (4.24), we get $T(r, f) = S(r, f)$, which is a contradiction. Therefore, $\chi_1 = \chi_2 = 0$. Then from (4.27) , we get $\chi_3 = 0$. This implies that

(4.31)
$$
e^{\xi} + \mu \xi^{(1)} - \mu \frac{G_1^{(1)}}{G_1} = 0,
$$

(4.32)
$$
\mu \xi^{(1)} - e^{\xi} - \mu \frac{H_1^{(1)}}{H_1} = 0,
$$

(4.33) $a_1 + a_2 = 0.$

Adding (4.31) and (4.32) , we get

$$
\frac{G_1^{(1)}}{G_1} + \frac{H_1^{(1)}}{H_1} = 2\xi^{(1)},
$$

and so by integration , we have

$$
(4.34) \tG1H1 = c0*e2ξ,
$$

where c_0^* is a non-zero constant.

Now from (4.22), (4.33) and (4.34), we get $e^{2\xi} = A$, where A is a constant. From (4.24), (4.25) and (4.33), we get

(4.35)
$$
\left(\frac{\sqrt{A}}{\mu} - \frac{G_1^{(1)}}{G_1}\right) G_1^2 = -\left(\frac{\sqrt{A}}{\mu} - \frac{H_1^{(1)}}{H_1}\right) B,
$$

where $B = (a_1 - a_2)^2/4(A - 1)$, constant.

If $\sqrt{A}/\mu - G_1^{(1)}/G_1 \not\equiv 0$, then from (4.23) and (4.35), we get $T(r, G_1) =$ $S(r, f)$ and so from (4.34), we get $T(r, H_1) = S(r, f)$. Therefore, from (4.24), we get $T(r, f) = S(r, f)$, which is a contradiction. Hence we must have $\mu G_1^{(1)}$ – $\overline{A}G_1=0$ and $\mu H_1^{(1)}$ – w 」 $AH_1 = 0$. This implies by Lemma 3.4 that G_1 and H_1 are of finite order. Also from (4.34), we see that G_1 and H_1 do not assume the value 0.

Therefore, we may assume that $G_1 = e^P$ and $H_1 = e^Q$, where P, Q are polynomials of degree p and q , respectively.

Differentiating once, we get $G_1^{(1)} = P^{(1)}e^P$ and $H_1^{(1)} = Q^{(1)}e^Q$. Therefore, $P^{(1)}$ and $Q^{(1)}$ are polynomials of degree $(p-1)$ and $(q-1)$, respectively. Since $\mu G_1^{(1)} = \sqrt{A}G_1$ and $\mu H_1^{(1)} = \sqrt{A}H_1$, we have $p = q = 1$. Hence in view of

(4.34), we may write $G_1 = 2d_1^* e^{cz}$ and $H = 2d_2^* e^{-cz}$, where c, d_1^* , d_2^* are non-zero constants.

Now from (4.24), (4.25) and (4.33), we get

$$
f^{\lambda} = c_1 e^{cz} + c_2 e^{-cz}, \ M(f) = \frac{\sqrt{A}(c_1 e^{2cz} - c_2)}{e^{cz}},
$$

where $c_1 = d_1^*/$ \overline{A} and $c_2 = d_2^*/$ A. This completes the proof of the theorem. \Box

References

- [1] G. Frank and W. Schwick, Meromorphie Funktionen, die mit einer Ableitung drei Werte teilen, Results Math. 22 (1992), 679–684.
- [2] G. Frank and X. Hua, Differential polynomials that share three values with their generated meromorphic function, Michigan Math. J. 46 (1999), no. 1, 175–186.
- [3] Y. Gu, Uniqueness of an entire function and its differential polynomial, Acta Math. Sinica 37 (1994), no. 6, 791–798.
- [4] G. G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl. 75 (1998), 441–446.
- [5] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [6] I. Lahiri, An Entire Function Weakly Sharing a Doubleton with its Derivative, Comput. Methods Funct. Theory 21 (2021), 379-397.
- [7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, New York, 1993.
- [8] P. Li, *Value sharing and differential equations*, J. Math. Anal. Appl. **310** (2005), 412– 423.
- [9] P. Li and C. C. Yang, When an entire function and its linear differential polynomial share two values, Illinois J. Math. 44 (2000), no. 2, 349–362.
- [10] P. Li and C. C. Yang, Value sharing of an entire function and its derivatives, J. Math. Soc. Japan. 51 (1999), no. 4, 781–799.
- [11] A. Z. Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions, Theory of Functions, Functional Analysis and Its Applications, Izd-vo Kha´rkovsk 14 (1971), 83–87.
- [12] E. Mues and M. Reinders, Meromorphie Funktionen, die mit einem linearen De¨erentialpolynom drei Werte teilen, Results Math. 22 (1992), 725–738.
- [13] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), no. 2–4, 195–206.
- [14] L. A. Rubel and C. C. Yang, *Values shared by an entire function and its derivatives*, Proc. Conf. Univ. of Kentucky, Lexington Ky, 1976, Lecture Notes in Math. 599 (1977), Berlin: Springer, 101–103.
- [15] L. Z. Yang, Entire functions that share finite values with their derivatives, Bull. Aust. Math. Soc. 41 (1990), 337–342.
- [16] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht, 2003.

Goutam Haldar Department of Mathematics,

Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur, Malda - 732141, India. E-mail: goutamiit1986@gmail.com