DOI QR코드

DOI QR Code

Precision proteomics with TurboID: mapping the suborganelle landscape

  • Han Byeol Kim (Mitohormesis Research Center) ;
  • Kwang-eun Kim (Department of Convergence Medicine, Yonsei University Wonju College of Medicine)
  • Received : 2024.05.15
  • Accepted : 2024.06.26
  • Published : 2024.11.01

Abstract

Recent research underscores the pivotal role of cellular organelles, such as mitochondria, the endoplasmic reticulum, and lysosomes, in maintaining cellular homeostasis. Their dynamic interactions are critical for metabolic regulation and stress response. Analysis of organelle proteomes offers valuable insights into their functions in both physiology and disease. Traditional proteomic approaches to studying isolated organelles are now complemented by innovative methodologies focusing on inter-organelle interactions. This review examines the integration of advanced proximity labeling technologies, including TurboID and split-TurboID, which address the inherent limitations of traditional techniques and enable precision proteomics of suborganelle compartments and inter-organellar contact sites. These innovations have led to discoveries regarding organelle interconnections, revealing mechanisms underlying metabolic processes such as cholesterol metabolism, glucose metabolism, and lysosomal repair. In addition to highlighting the advancements in TurboID applications, this review delineates the evolving trends in organelle research, underscoring the transformative potential of these techniques to significantly enhance organelle-specific proteomic investigations.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2022R1C1C2004982 to K.e.K.) and Yonsei Startup Research Project (2024-72-0021).

References

  1. Bae Y, Kim GY, Jessa F, Ko KS, Han J. Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection. Korean J Physiol Pharmacol. 2022;26:15-24.
  2. Ghneim HK, Alfhili MA, Alharbi SO, Alhusayni SM, Abudawood M, Aljaser FS, Al-Sheikh YA. Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts. Korean J Physiol Pharmacol. 2022;26:263-275.
  3. Jung Y, Kim W, Shin NK, Bae YM, Wie J. Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis. Korean J Physiol Pharmacol. 2023;27:311-323.
  4. Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20:1427-1435.
  5. Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases. Front Cell Dev Biol. 2021;9:774989.
  6. Nguyen HT, Wiederkehr A, Wollheim CB, Park KS. Regulation of autophagy by perilysosomal calcium: a new player in β-cell lipotoxicity. Exp Mol Med. 2024;56:273-288. Erratum in: Exp Mol Med. 2024. doi: 10.1038/s12276-024-01265-4. [Epub ahead of print]
  7. Kim JE, Park SY, Kwak C, Lee Y, Song DG, Jung JW, Lee H, Shin EA, Pinanga Y, Pyo KH, Lee EH, Kim W, Kim S, Jun CD, Yun J, Choi S, Rhee HW, Liu KH, Lee JW. Glucose-mediated mitochondrial reprogramming by cholesterol export at TM4SF5-enriched mitochondria-lysosome contact sites. Cancer Commun (Lond). 2024;44:47-75.
  8. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol. 2018;36:880-887. Erratum in: Nat Biotechnol. 2020;38:108.
  9. Cho KF, Branon TC, Udeshi ND, Myers SA, Carr SA, Ting AY. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc. 2020;15:3971-3999.
  10. Choi CR, Rhee HW. Proximity labeling: an enzymatic tool for spatial biology. Trends Biotechnol. 2022;40:145-148.
  11. Kang MG, Rhee HW. Molecular spatiomics by proximity labeling. Acc Chem Res. 2022;55:1411-1422.
  12. Shin HR, Citron YR, Wang L, Tribouillard L, Goul CS, Stipp R, Sugasawa Y, Jain A, Samson N, Lim CY, Davis OB, Castaneda-Carpio D, Qian M, Nomura DK, Perera RM, Park E, Covey DF, Laplante M, Evers AS, Zoncu R. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science. 2022;377:1290-1298.
  13. Tan JX, Finkel T. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature. 2022;609:815-821.
  14. Kim KE, Park I, Kim J, Kang MG, Choi WG, Shin H, Kim JS, Rhee HW, Suh JM. Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice. Nat Commun. 2021;12:5204.
  15. Wei W, Riley NM, Yang AC, Kim JT, Terrell SM, Li VL, Garcia-Contreras M, Bertozzi CR, Long JZ. Cell type-selective secretome profiling in vivo. Nat Chem Biol. 2021;17:326-334.
  16. Cho S, Lee H, Lee HY, Kim SJ, Song W. The effect of fibroblast growth factor receptor inhibition on resistance exercise training-induced adaptation of bone and muscle quality in mice. Korean J Physiol Pharmacol. 2022;26:207-218.
  17. Sung DJ, Jeon YK, Choi J, Kim B, Golpasandi S, Park SW, Oh SB, Bae YM. Protective effect of low-intensity treadmill exercise against acetylcholine-calcium chloride-induced atrial fibrillation in mice. Korean J Physiol Pharmacol. 2022;26:313-323.
  18. Lee SJ, Kim TW, Park TH, Lee IH, Jang EC, Kwon SC, Lee HJ, Choi JH, Lee JB. Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level. Korean J Physiol Pharmacol. 2022;26:501-509.
  19. Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab. 2023;35:1261-1279.e11.
  20. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal. 2015;22:995-1019.
  21. Kwak C, Shin S, Park JS, Jung M, Nhung TTM, Kang MG, Lee C, Kwon TH, Park SK, Mun JY, Kim JS, Rhee HW. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc Natl Acad Sci U S A. 2020;117:12109-12120. Erratum in: Proc Natl Acad Sci U S A. 2020;117:19605.
  22. Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND, Thoudam T, Kwak C, Rhee HW, Lee IK, Carr SA, Ting AY. Split-TurboID enables contact-dependent proximity labeling in cells. Proc Natl Acad Sci U S A. 2020;117:12143-12154.
  23. Yeerken D, Xiao W, Li J, Wang Y, Wu Q, Chen J, Gong W, Lv M, Wang T, Gong Y, Liu R, Fan J, Li J, Zhang W, Zhan Q. Nlp-dependent ER-to-Golgi transport. Int J Biol Sci. 2024;20:2881-2903.
  24. Kovacs D, Gay AS, Debayle D, Abelanet S, Patel A, Mesmin B, Luton F, Antonny B. Lipid exchange at ER-trans-Golgi contact sites governs polarized cargo sorting. J Cell Biol. 2024;223:e202307051.
  25. Lee YB, Jung M, Kim J, Charles A, Christ W, Kang J, Kang MG, Kwak C, Klingstrom J, Smed-Sorensen A, Kim JS, Mun JY, Rhee HW. Super-resolution proximity labeling reveals anti-viral protein network and its structural changes against SARS-CoV-2 viral proteins. Cell Rep. 2023;42:112835.
  26. Shin S, Lee SY, Kang MG, Jang DG, Kim J, Rhee HW, Kim JS. Super-resolution proximity labeling with enhanced direct identification of biotinylation sites. Commun Biol. 2024;7:554.