Acknowledgement
본 연구는 제주지방기상청에서 백록담 기후변화관측소의 기상자료를 제공받아 연구에 사용하였습니다. 자료 제공에 감사드립니다.
References
- Adamowski, J., and Chan, H.F. (2011). "A wavelet neural network conjunction model for groundwater level forecasting." Journal of Hydrology, Vol. 407, No. 1-4, pp. 28-40.
- Alizamir, M., Kisi, O., and Zounemat-Kermani, M. (2018). "Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data." Hydrological Sciences Journal, Vol. 63, No. 1, pp. 63-73.
- Barthel, R., and Banzhaf, S. (2016). "Groundwater and surface water interaction at the regional-scale - a review with focus on regional integrated models." Water Resources Management, Vol. 30, No. 1, pp. 1-32.
- Bengio, Y., Simard, P., and Frasconi, P. (1994). "Learning long-term dependencies with gradient descent is difficult." IEEE Transactions on Neural Networks, Vol. 5, No. 2, pp. 157-166.
- Bizhanimanzar, M., Leconte, R., and Nuth, M. (2019). "Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water - groundwater hydrologic models." Hydrology and Earth System Sciences, Vol. 23, No. 5, pp. 2245-2260.
- Chollet, F., and Allaire, J.J. (2018). Deep learning with R. Manning Publications, Shelter Island, NY, U.S., p. 360.
- Davoudi Moghaddam, D., Rahmati, O., Haghizadeh, A., and Kalantari, Z. (2020). "A modeling comparison of groundwater potential mapping in a mountain bedrock aquifer: QUEST, GARP, and RF models." Water, Vol. 12, No. 3, 679.
- Falbel, D., Allaire, J.J., Chollet, F., Tang, Y., Van Der Bijl, W., Studer, M., Keydana, S. (2019). R Interface to 'Keras'. R Package Version 2.2.4.1, accessed 5 April 2019, <https://CRAN.R-project.org/package=keras>.
- Fallah-Mehdipour, E., Haddad, O.B., and Marino, M.A. (2013). "Prediction and simulation of monthly groundwater levels by genetic programming." Journal of Hydro-Environment Research, Vol. 7, No. 4, pp. 253-260.
- Gharehbaghi, A., Ghasemlounia, R., Ahmadi, F., and Albaji, M. (2022). "Groundwater level prediction with meteorologically sensitive Gated Recurrent Unit (GRU) neural networks." Journal of Hydrology, Vol. 612, 128262.
- Gholizadeh, H., Zhang, Y., Frame, J., Gu, X., and Green, C.T. (2023). "Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama." Science of the Total Environment, Vol. 901, 165884.
- Gong, Y., Zhang, Y., Lan, S., and Wang, H. (2016). "A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida." Water Resources Management, Vol. 30, pp. 375-391.
- Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., and Seung, H.S. (2000). "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit." Nature, Vol. 405, No. 6789, pp. 947-951.
- Haykin, S. (2009). Neural networks and learning machines, Pearson Prentice Hall, Upper Saddle River, NJ, U.S.
- Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780.
- Jeihouni, E., Mohammadi, M., Eslamian, S., and Zareian, M.J. (2019). "Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study - Shabestar Plain, Iran." Environmental Monitoring and Assessment, Vol. 191, No. 10, 620.
- Jeju Special Self-Governing Province (JSSGP) (2022). Basic plan for integrated water management for Jeju Special Self-Governing Province. pp. 1-485.
- Jha, M.K., and Sahoo, S. (2014). "Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater." Hydrological Processes, Vol. 29, No. 5, pp. 671-691.
- Kim, D., Jang, C., Choi, J., and Kwak, J. (2023). "A case study: Groundwater level forecasting of the gyorae area in actual practice on jeju island using deep-learning technique." Water, Vol. 15, No. 5, 972.
- Kim, I., and Lee, J. (2022). "Performance analysis of ANN prediction for groundwater level considering regional- specific influence components." Groundwater, Vol. 60, No. 3, pp. 344-361.
- Kim, T.W., and Valdes, J.B. (2003). "Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks." Journal of Hydrologic Engineering, Vol. 8, No. 6, pp. 319-328.
- Kingma, D.P., and Ba, J. (2014). "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980.
- Kow, P.Y., Liou, J.Y., Sun, W., Chang, L.C., and Chang, F.J. (2024). "Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models." Journal of Environmental Management, Vol. 351, 119789.
- Lallahem, S., Mania, J., Hani, A., and Najjar, Y. (2005). "On the use of neural networks to evaluate groundwater levels in fractured media." Journal of Hydrology, Vol. 307, No. 1-4, pp. 92-111.
- Le, X.H., Ho, H.V., Lee, G., and Jung, S. (2019). "Application of long short-term memory (LSTM) neural network for flood forecasting." Water, Vol. 11, No. 7, 1387.
- Maier, H.R., and Dandy, G.C. (2000). "Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications." Environmental Modelling & Software, Vol. 15, No. 1, pp. 101-124.
- McDonald, M.G., and Harbaugh, A.W. (1988). A modular three-dimensional finite-difference ground-water flow model. Vol. 6. US Geological Survey, Reston, VA, U.S.
- Mirarabi, A., Nassery, H.R., Nakhaei, M., Adamowski, J., Akbarzadeh, A.H., and Alijani, F. (2019). "Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems." Environmental Earth Sciences, Vol. 78, No. 15, pp. 1-15.
- Mohanty, S., Jha, M.K., Kumar, A., and Panda, D.K. (2013). "Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi - Surua Inter-basin of Odisha, India." Journal of Hydrology, Vol. 495, pp. 38-51.
- Mohanty, S., Jha, M.K., Kumar, A., and Sudheer, K.P. (2010). "Artificial neural network modeling for groundwater level forecasting in a river island of eastern India." Water Resources Management, Vol. 24, pp. 1845-1865.
- Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900.
- Muller, J., Park, J., Sahu, R., Varadharajan, C., Arora, B., Faybishenko, B., and Agarwal, D. (2021). "Surrogate optimization of deep neural networks for groundwater predictions." Journal of Global Optimization, Vol. 81, No. 1, pp. 203-231.
- Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290.
- Payne, K., Chami, P., Odle, I., Yawson, D.O., Paul, J., Maharaj-Jagdip, A., and Cashman, A. (2022). "Machine learning for surrogate groundwater modelling of a small carbonate island." Hydrology, Vol. 10, No. 1, 2.
- Prechelt, L. (2012) "Early stopping - but when?" Neural networks: tricks of the trade, Edited by Montavon, G., Orr, G.B., and Muller, KR., Springer, Heidelberg, Germany, pp. 53-67.
- Rajaee, T., Ebrahimi, H., and Nourani, V. (2019). "A review of the artificial intelligence methods in groundwater level modeling." Journal of Hydrology, Vol. 572, pp. 336-351.
- Rakhshandehroo, G.R., Vaghefi, M., and Aghbolaghi, M.A. (2012). "Forecasting groundwater level in Shiraz plain using artificial neural networks." Arabian Journal for Science and Engineering, Vol. 37, No. 7, pp. 1871-1883.
- Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). "Learning representations by back-propagating errors." Nature, Vol. 323, No. 6088, pp. 533-536.
- Sahoo, S., Russo, T.A., Elliott, J., and Foster, I. (2017). "Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US." Water Resources Research, Vol. 53, No. 5, pp. 3878-3895.
- Seidu, J., Ewusi, A., Kuma, J.S.Y., Ziggah, Y.Y., and Voigt, H.J. (2023). "Impact of data partitioning in groundwater level prediction using artificial neural network for multiple wells." International Journal of River Basin Management, Vol. 21, No. 4, pp. 639-650.
- Seifi, A., Ehteram, M., Singh, V.P., and Mosavi, A. (2020). "Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN." Sustainability, Vol. 12, No. 10, 4023.
- Shin, M.J., Kim, J.W., Moon, D.C., Lee, J.H., and Kang, K.G. (2021). "Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island." Journal of Korea Water Resources Association, Vol. 54, No. 12, pp. 1143-1154.
- Shin, M.J., Moon, S.H., Kang, K.G., Moon, D.C., and Koh, H.J. (2020). "Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network." Hydrology, Vol. 7, No. 3, 64.
- Sit, M., Demiray, B.Z., Xiang, Z., Ewing, G.J., Sermet, Y., and Demir, I. (2020). "A comprehensive review of deep learning applications in hydrology and water resources." Water Science and Technology, Vol. 82, No. 12, pp. 2635-2670.
- Sun, J., Hu, L., Li, D., Sun, K., and Yang, Z. (2022). "Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management." Journal of Hydrology, Vol. 608, 127630.
- Sun, Y., Wendi, D., Kim, D.E., and Liong, S.Y. (2016). "Application of artificial neural networks in groundwater table forecasting - a case study in a Singapore swamp forest." Hydrology and Earth System Sciences, Vol. 20, No. 4. pp. 1405-1412.
- Tao, H., Hameed, M.M., Marhoon, H.A., Zounemat-Kermani, M., Heddam, S., Kim, S., Sulaiman, S.O., Tan, M.L., Sa'adi, Z., Mehr, A.D., Allawi, M.F., Abba, S.I., Zain, J.M., Falah, M.W., Jamei, M., Bokde, N.D., Bayatvarkeshi, M., Al-Mukhtar, M., Bhagat, S.K., Tiyasha, T., Yaseen, Z.M. (2022). "Groundwater level prediction using machine learning models: A comprehensive review." Neurocomputing, Vol. 489, pp. 271-308.
- Yin, J., Medellin-Azuara, J., Escriva-Bou, A., and Liu, Z. (2021). "Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change." Science of The Total Environment, Vol. 769, 144715.