과제정보
이 논문은 2024학년도 제주대학교 교원성과지원사업에 의하여 연구되었음.
참고문헌
- 김근형, "귀납적 사회과학연구 방법론을 위한 토픽모델링의 확장 및 사례분석,", 정보시스템연구, 제31권, 제4호, 2022, pp.25-45.
- 김효곤, 유동희, "BERT를 활용한 미국 기업 공시에 대한 감성분석 및 시각화,", 정보시스템연구, 제31권, 제3호, 2022, pp.67-87.
- 박상언, 강주영, "ChatGPT 및 거대언어모델의 추론 능력 향상을 위한 프롬프트 엔지니어링 방법론 및 연구현황 분석," 지능정보연구, 제29권, 제4호, 2023, pp.287-306.
- Cedric Fevotte and Jerome Idie, "Algorithms for nonnegative matrix factorization with the - divergence," Neural computation, Vol.23, No.2, 2011, pp.2421-2456.
- Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim, "On the surprising behavior of distance metrics in high dimensional space," In International conference on database theory, 2001, pp.420-434.
- David M Blei, Andrew Y Ng, and Michael I Jordan, "Latent dirichlet allocation," Journal of machine Learning research 3, 2003, pp.993-1022.
- Devlin Jacob, Chang Ming-Wei, Lee Kenton and Toutanova, Kristina. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", arXiv:1810.04805v2 [cs.CL], 2018, pp.1-16.
- Gerlof Bouma, "Normalized (pointwise) mutual information in collocation extraction," Proceedings of GSCL 30, 2009, pp.31-40.
- L. McInnes, J. Healy, and J. Melville, "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction," arXiv:1802.03426 e-prints, 2018, pp.1-63.
- L. McInnes and John Healy, "Accelerated hierarchical density based clustering." Data Mining Workshops (ICDMW) In IEEE International Conference, 2017, pp.33-42.
- Maarten Grootendorst, "BERTopic: Neural topic modeling with a class-based TF-IDF procedure," arXiv:2203.05794 [cs.CL], 2023, pp.1-10.
- Nils Reimers and Iryna Gurevych, Sentencebert, "Sentence embeddings using siamese bertnetworks," In Proceedings of Conference on Empirical Methods in Natural Language Processing, 2019, pp.3982-3991.
- Rada Mihalcea and Paul Tarau, "TextRank: Bringing Order into Text," Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2004, pp.404-411.
- Silvia Terragni, Elisabetta Fersini and Enza Messina, "Word Embedding-Based Topic Similarity Measures," Natural Language Processing and Information Systems: 26th International Conference on Applications of Natural Language to Information Systems, 2021, pp.33-45.