DOI QR코드

DOI QR Code

Optimal conditions for the formation of cyst-zygote for stable artificial seed production of Capsosiphon fulvescens (Ulvophyceae, Chlorophyta)

매생이(Capsosiphon fulvescens)의 인공종자 생산을 위한 구상체 형성 및 생장 조건 분석

  • Ji Woong Lee (Seaweed Research Institute, National Institute of Fisheries Science) ;
  • Hyun Il Yoo (Aquatic Plant Variety Center, National Institute of Fisheries Science) ;
  • Eun Kyoung Hwang (Seaweed Research Institute, National Institute of Fisheries Science) ;
  • Seung Oh Kim (Seaweed Research Institute, National Institute of Fisheries Science)
  • 이지웅 (국립수산과학원 해조류연구소) ;
  • 유현일 (국립수산과학원 수산식물품종관리센터) ;
  • 황은경 (국립수산과학원 해조류연구소) ;
  • 김승오 (국립수산과학원 해조류연구소)
  • Received : 2024.08.12
  • Accepted : 2024.09.19
  • Published : 2024.09.30

Abstract

Among the different types of seaweed that are cultivated in Korea for food, Capsosiphon fulvescensis the filamentous green alga with the highest production value. However, its harvest yield varies significantly from year to year due to its dependence on the natural seeding method. The present study aimed to identify the conditions affecting the formation of cyst-zygotes that can be utilized as artificial seeds during the life cycle of C. fulvescens. Gametangia and zygotes of C. fulvescens were found to be highly developed at temperatures above 15℃, with a maximum gametangial development rate of about 35% observed after 7 days of culture. The formation of zygotes into cystzygotes was induced within 7 days in all temperature conditions, but after 30 days of culturing, cyst-zygotes germinated into filamentous thalli at temperatures above 20℃, while the most stable formation and stabilization were observed at 15℃. Cystzygotes formed at 15℃ showed high growth when they were transferred to 25℃ conditions, and zoospores matured inside the cells. The production of cyst-zygotes was mostly influenced by temperature, and a gradual increase in temperature was found to be necessary for the formation and growth of cyst-zygotes. The culture conditions facilitating the formation of cyst-zygotes reported in this study can be useful for the production of artificial seeds and breeding technology for the effective cultivation of seaweed.

녹조류 매생이(Capsosiphon fulvescens)는 국내 양식되는 해조류 중 생산량 대비 생산금액이 가장 높은 고부가 가치 품목이지만 자연채묘에 의존하고 있어 매해 생산량 변동이 심하다. 본 연구는 매생이의 생활사 단계 중 인공종자로 활용할 수 있는 구상체의 생성 조건을 규명하고자 하였다. 매생이 배우자낭의 발달과 접합자의 생성은 15℃ 이상의 환경조건에서 높게 나타났으며, 7일간 배양에서 최대 약 35%의 배우자낭 발달을 나타냈다. 접합자의 구상체로의 형성은 5~25℃의 모든 온도 조건에서 7일 이내 유도되었지만, 30일간 배양했을 때 20℃ 이상의 조건에서는 엽체로 발아하는 특성을 보였고 15℃에서 가장 안정적으로 형성 및 유지되었다. 15℃에서 형성된 구상체는 25℃ 조건으로 옮겼을 때 높은 생장률을 나타냈으며 세포 내부에 유주자가 성숙하였다. 구상체의 생성에는 수온의 영향이 가장 컸으며 특히 구상체의 형성과 생장에 단계적인 온도 상승이 필요한 것으로 나타났다. 본 연구 결과로 얻어진 구상체 생성 조건은 인공종자 생산에 활용될 수 있으며, 매생이의 효과적인 양식을 위한 인공채묘 및 완전양식 기술의 기반자료로 활용될 것이다.

Keywords

Acknowledgement

본 연구는 국립수산과학원의 연구비 지원(R2024026)으로 수행되었습니다.

References

  1. Chihara M. 1967. Developmental morphology and systematics of Capsosiphon fulvescens as found in Izu, Japan. Jpn. Bull. Nat. Sci. Mus. 10:163-170.
  2. Hanic LA and SC Lindstrom. 2008. Life history and systematic studies of Pseudothrix borealis gen. et sp. nov. (=North Pacific Capsosiphon groenlandicus, Ulotrichaceae, Chlorophyta). Algae 23:119-133. https://doi.org/10.4490/algae.2008.23.2.119
  3. Horinouchi Y and T Togashi. 2023. Unicellular and multicellular developmental variations in algal zygotes produce sporophytes. Biol. Lett. 19:20230313. https://doi.org/10.1098/rsbl.2023.0313
  4. Horinouchi Y, M Yamaguchi, H Chibana and T Togashi. 2019. Nuclear behavior and roles indicate that Codiolum phase is a sporophyte in Monostroma angicava (Ulotrichales, Ulvophyceae). J. Phycol. 55:534-542. https://doi.org/10.1111/jpy.12841
  5. Hwang EK, H Amano and CS Park. 2008b. Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): developing a new species of marine macroalgae for cultivation in Korea. J. Appl. Phycol. 20:147-151. https://doi.org/10.1007/s10811-007-9198-z
  6. Hwang EK, YH Yi, WJ Shin and CH Sohn. 2003. Growth and maturation of a green alga, Capsosiphon fulvescens, as a new candidate for seaweed cultivation in Korea. In: Proceedings of the 17th International Seaweed Symposium (Champman RO, RJ Anderson, VJ Vreeland and IR Davison, eds.). Oxford University Press. Oxford, UK. pp. 59-64.
  7. Hwang HJ, MJ Kwon, IH Kim and TJ Nam. 2008a. The effect of polysaccharide extracted from the marine alga Capsosiphon fulvescens on ethanol administration. Food Chem. Toxicol. 46:2653-2657. https://doi.org/10.1016/j.fct.2008.04.027
  8. KOSIS. 2024. Fishery Production Survey. Korean Statistical Information Service. Statistics Korea. Daejeon, Korea.
  9. Lee YH. 2001. Seed production and cultivation of a green alga, Capsosiphon fulvescens. Ph.D. dissertation. Pukyong National University. Busan, Korea.
  10. Migita S. 1967. Life cycle of Capsosiphon fulvescens (C. Agardh) Setchell and Gardner. Bull. Fac. Fish. Nagasaki Univ. 22:21-31.
  11. Moreira A, S Cruz, R Marques and P Cartaxana. 2022. The underexplored potential of green macroalgae in aquaculture. Rev. Aquac. 14:5-26. https://doi.org/10.1111/raq.12580
  12. Ohno M. 1995. Cultivation of Monostroma nitidum (Chlorophyta) in a river estuary, southern Japan. J. Appl. Phycol. 7:207-213. https://doi.org/10.1007/BF00693069
  13. Ohno M and VD Triet. 1997. Artificial seeding of the green seaweed Monostroma for cultivation. J. Appl. Phycol. 9:417-423. https://doi.org/10.1023/A:1007935110688
  14. O'Kelly CJ, B Wysor and WK Bellows. 2004. Collinsiella (Ulvophyceae, Chlorophyta) and other ulotrichalean taxa with shell-boring sporophytes form a monophyletic clade. Phycologia 43:41-49. https://doi.org/10.2216/i0031-8884-43-1-41.1
  15. Provasoli L. 1968. Media and prospects for the cultivation of marine algae. pp. 63-75. In: Cultures and Collections of Algae, Proceedings of US Japan Conference. Japanese Society of Plant Physiology.
  16. Schindelin J, I Arganda-Carreras, E Frise, V Kaynig, M Longair, T Pietzsch, S Preibisch, C Rueden, S Saalfeld, B Schmid, JY Tinevez, DJ White, V Hartenstein, K Eliceiri, P Tomancak and A Cardona. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9:676-682. https://doi.org/10.1038/nmeth.2019
  17. Shin WJ. 2002. Viability gamete release of a green alga, Capsosiphon fulvescens by short-term freeze-preservation. M.S. thesis. Pukyong National University. Busan, Korea.
  18. Sohn CH 1998. The seaweed resources of Korea. pp. 15-33. In: Seaweed Resources of the World (Critchley AT and M Ohno, eds.). Japan International Cooperation Agency. Yokosuka, Japan.
  19. Sun SM, SH Yang, KS Golokhvast, B Le and G Chung. 2016. Reconstructing the phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea based on rbcL and 18S rDNA sequences. BioMed Res. Int. 2016:1462916. https://doi.org/10.1155/2016/1462916
  20. Tatewaki M. 1969. Culture studies on the life history of some species of the genus Monostroma. Sci. Pap. Inst. Algol. Res., Fac. Sci., Hokkaido Univ. 6:1-56.
  21. Van den Hoek C, DG Mann and HM Jahns. 1995. Algae: An Introduction to Phycology. Cambridge University Press. Cambridge, UK.
  22. Vesty EF, RW Kessler, T Wichard and JC Coates. 2015. Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): Comparison with Ulva mutabilis and potential for laboratory culture. Front. Plant Sci. 6:15. https://doi.org/10.3389/fpls.2015.00015
  23. Yoshida K 1970. Studies on germling development and life-history in Ulvaceae and Monostromaceae. Part I. Publ. Seto Mar. Biol. Lab. 17:403-428.