DOI QR코드

DOI QR Code

Effectiveness of bactericide for controlling fireblight of pear tree using chlorophyll fluorescence technology

엽록소 형광 기술을 활용한 배나무 화상병 방제 약제 효과 분석

  • Tae seon Eom (Department of Plant Resources and Landscape Architecture, Hankyong National University) ;
  • Ji Young Shim (Department of Plant Resources and Landscape Architecture, Hankyong National University) ;
  • Seung Yeon Jang (Department of Plant Resources and Landscape Architecture, Hankyong National University) ;
  • Ye Bin Hwang (Department of Plant Resources and Landscape Architecture, Hankyong National University) ;
  • Sung Yung Yoo (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Jong Yoon Choi (Department of Environmental and Agricultural Research, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Tae Wan Kim (Department of Plant Resources and Landscape Architecture, Hankyong National University)
  • 엄태선 (한경국립대학교 식물자원조경학부) ;
  • 심지영 (한경국립대학교 식물자원조경학부) ;
  • 장승연 (한경국립대학교 식물자원조경학부) ;
  • 황예빈 (한경국립대학교 식물자원조경학부) ;
  • 유성영 (한경국립대학교 식물생태화학연구소) ;
  • 최종윤 (경기도농업기술원 환경농업연구과) ;
  • 김태완 (한경국립대학교 식물자원조경학부)
  • Received : 2024.01.30
  • Accepted : 2024.09.02
  • Published : 2024.09.30

Abstract

Due to rapid spread of fireblight, the Rural Development Administration is supplying bactericides to farmers. However, research on inhibitory effects of main active ingredients in these bactericides on fireblight is lacking. Chlorophyll fluorescence analysis is a non-destructive method for analyzing the photosynthetic efficiency of plants, enabling time-series data analysis of pathogen progression and allowing for large-scale studies. Therefore, this study analyzed inhibitory effects of main active ingredients in bactericides on fireblight using chlorophyll fluorescence response analysis. Flowering pear trees (three-year-old 'Shingo' variety) were sprayed with control agents and fire blight pathogens on flowers. Chlorophyll fluorescence responses were then measured at seven-day intervals. Twenty-eight days after bactericide treatment, the fluorescence of the O-J transition stage in the untreated group was twice as high as in the average bactericide-treated group presumably due to inhibition of electron transport in the PSII donor side caused by pathogen infection, leading to leaf necrosis. Additionally, the electron transport efficiency (ET2o, RE1o) decreased, reducing the driving force of photosynthesis (DF total ABS) to 20% of the average bactericide-treated group, indicating chlorophyll damage and reduced photosynthetic capacity. In conclusion, chlorophyll fluorescence technology can be used to quantitatively evaluate the efficacy of fire blight control agents during the flowering period of pear trees.

화상병의 빠른 확산으로 농촌진흥청은 약제를 농가에 보급하고 있으나, 주성분 약제에 대한 화상병 억제 효과에 대한 연구는 부족한 상황이다. 엽록소 형광 분석은 식물의 광합성 효율을 비파괴적으로 분석하여 병원균 진전에 따른 시계열 데이터 분석이 가능하고 대량 분석할 수 있다는 장점이 있다. 본 연구는 엽록소 형광 분석을 통해 주성분약제에 대한 화상병 억제 효과를 분석하였다. 개화 상태의 배나무(신고 3년생)를 대상으로 방제 약제와 화상병원균을 꽃에 분무 처리 및 접종하고, 7일 간격으로 엽록소 형광반응을 측정했다. 약제 처리 28일 후 약제 무처리구는 약제처리구 평균 대비 O-J 전이단계의 형광량이 2배 높게 나타났는데, 이는 병원균 감염으로 잎이 고사하여 광합성계 II(PSII) 공여체의 전자전달 저해가 발생했기 때문인 것으로 추정된다. 또한, 전자전달효율(ET2o, RE1o)이 감소하고 광화학적 구동력(DF total ABS)이 약제 처리구 평균 대비 20% 수준으로 감소한 것으로 나타났는데, 이는 엽록소의 손상과 광합성 능력의 감소를 의미한다. 결론적으로, 엽록소 형광 기술을 활용하여 배나무 개화기 화상병 방제 효과를 정량적으로 평가할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(과제번호: RS-2021-RD012471) "배나무 화상병 발생지 격리시설에서의 화상병 수체내 전이경로와 방제 효과 구명"의 지원에 의해 이루어진 것임.

References

  1. Billing E. 2011. Fire blight. Why do views on host invasion by Erwinia amylovora differ? Plant Pathol. 60:178-189. https://doi.org/10.1111/j.1365-3059.2010.02382.x
  2. Bonn WG and T van der Zwet. 2000. Distribution and economic importance of fire blight. pp. 37-53. In: Fire Blight: The Disease and its Causative Agent, Erwinia amylovora (Vanneste J, ed.). CAB International. Wallingford, UK. https://doi.org/10.1079/9780851992945.0037
  3. Christen D, S Schonmann, M Jermini, RJ Strasser and G Defago. 2007. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Expt. Bot. 60:504-514. https://doi.org/10.1016/j.envexpbot.2007.02.003
  4. Guisse B, A Srivastava and R Strasser. 1995. The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. Arch. Sci. 48:147-160. https://doi.org/10.5169/SEALS740252
  5. Ham H, YK Lee, HG Kong, SJ Hong, KJ Lee, GR Oh, MH Lee and Yh Lee. 2020. Outbreak of fire blight of apple and Asian pear in 2015-2019 in Korea. Res. Plant Dis. 26:222-228. https://doi.org/10.5423/RPD.2020.26.4.222
  6. Ham HD, TS Kim, MH Lee, KB Park, JH An, DH Kang and TW Kim. 2018. The assessment of photochemical index of nursery seedlings of cucumber and tomato under drought stress. Korean J. Environ. Biol. 36:479-487. https://doi.org/10.11626/KJEB.2018.36.4.479
  7. Heyens K and R Valcke. 2006. Fluorescence imaging of the infection pattern of apple leaves with Erwinia amylovora. Acta Horticult. 704:69-74. https://doi.org/10.17660/ActaHortic.2006.704.7
  8. Kang HG, TS Kim, SH Park, TW Kim and SY Yoo. 2016. Photochemical index analysis on different shading level of garden plants. Korean J. Environ. Biol. 34:264-271. https://doi.org/10.11626/KJEB.2016.34.4.264
  9. Kim SH, SH Ryu, B Yun, KH Cho, SY Cho and JG Park. 2023. Pytotoxicity by continuous spraying of fruit fire blight disinfectant during growing season of apple and pear. Korean J. Plant Res. 36.1. 100-106. https://doi.org/10.7732/KJPR.2023.36.1.100
  10. Lee MS, I Lee, SK Kim, CS Oh and DH Park. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24:41-51. https://doi.org/10.5423/RPD.2018.24.1.41
  11. Li Y, J Liu, P Lv, J Mi and B Zhao. 2022. Silicon improves the photosynthetic performance of oat leaves infected with Puccinia graminis f. sp. avenae. Front. Plant Sci. 13:1037136. https://doi.org/10.3389/fpls.2022.1037136
  12. EPPO. 2013. PM 7/20 (2)* Erwinia amylovora. EPPO Bulletin. 43:21-45. https://doi.org/10.1111/epp.12019
  13. Oh SJ and SC Koh. 2005. Analysis of O-J-I-P transients from four subtropical plant species for screening of stress indicators under low temperature. J. Environ. Sci. 14:389-395. https://doi.org/10.5322/JES.2005.14.4.389
  14. Papageorgiou GC and Govindjee. 2004. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Springer. Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-3218-9
  15. Park DH, JG Yu, EJ Oh, KS Han, MC Yea, SJ Lee, IS Myung, HS Shim and CS Oh. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946. https://doi.org/10.1094/PDIS-11-15-1364-PDN
  16. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Accessed May 21, 2024.
  17. RDA. 2022. Fruit Tree Fire Blight Prediction Information System. Rural Development Administration. Jeonju, Korea. https://www.fireblight.org/mobile/index. Accessed April 3, 2023.
  18. Salehi Z, H Abdollahi and SM Miri. 2018. Chlorophyll fluorescence response in susceptible and tolerant pear cultivars to fire blight in active and inactive chloroplast conditions. Seed Plant Prod. J. 34:73-87. https://doi.org/10.22092/sppj.2018.118102
  19. Stirbet A and Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B-Biol. 104:236-257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
  20. Strasser RJ, M Tsimilli-Michael and A Srivastava. 2004. Analysis of the chlorophyll a fluorescence transient. pp. 321-362. In: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer. Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_12
  21. Vrancken K, M Holtappels, H Schoofs, T Deckers and R Valcke. 2013. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiol. 159:823-832. https://doi.org/10.1099/mic.0.064881-0
  22. Wang X, W Yang, Y Yang, M Huang, Y Guo and Q Zhu. 2022. Application of chalorophyll a fluorescence in analysis and detection of bacterial wilt in tomato plants. J. ASABE 65:347-356. https://doi.org/10.13031/ja.14696
  23. Weng H, Y Liu, I Captoline, X Li, D Ye and R Wu. 2021. Citrus Huanglongbing detection based on polyphasic chlorophyll a fluorescence coupled with machine learning and model transfer in two citrus cultivars. Comput. Electron. Agric. 187:106289. https://doi.org/10.1016/j.compag.2021.106289
  24. Yoo SY, KC Eom, SH Park and TW Kim. 2012. Possibility of drought stress indexing by chlorophyll fluorescence imaging technique in red pepper(Capsicum annuum L.). Korean J. Soil Sci. Fert. 45:676-682. https://doi.org/10.7745/KJSSF.2012.45.5.676