DOI QR코드

DOI QR Code

Recent Advancements in Biocompatible Coatings for Metallic and Non-Metallic Biomaterials: A Review

  • Received : 2024.07.30
  • Accepted : 2024.08.13
  • Published : 2024.10.31

Abstract

Metallic biomaterials are commonly utilized in medical implants due to their outstanding biocompatibility and corrosion resistance. These materials provide a strong foundation for various coating applications, with hydroxyapatite standing out due to its strong chemical resemblance to natural bone tissue, resulting in an exceptional biocompatibility. Recent research has highlighted the promise of composite coatings comprising hydroxyapatite combined with other hydroxides, particularly in the context of biomedical applications. These composite coatings exhibit notable strengths, enhanced adhesion properties, and superior corrosion resistance when they are applied to metallic biomaterials. Furthermore, the introduction of nanocomposite coatings has been proven to be effective in mitigating bacterial growth on surfaces. The application of composite coatings can result in increased surface roughness on coated samples. Crucially, the homogeneity within the structure of these composite coatings can enhance their ability to form strong bonds with bone tissues. This review synthesizes observed findings regarding composite coatings and their potential advantages in diverse applications. This review may furnish invaluable insights for researchers and practitioners actively engaged in diverse aspects of bone implant design and fabrication.

Keywords

References

  1. T. Aydemir, L. Liverani, J. I. Pastore, S. M. Cere, W. H. Goldmann, A. R. Boccaccini, J. Ballarre, Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel, Materials Science and Engineering: C, 115, 111062 (2020). Doi: https://doi.org/10.1016/j.msec.2020.111062
  2. N. F. Nuswantoro, G. Gunawarman, M. R. Saputra, I. P. Nanda, M. H. Idris, and A. Arafat, Microstructure analysis of hydroxyapatite coating on stainless steel 316L using investment casting technique for implant application, International Journal on Advanced Science Engineerings Information Technology, 8, 2168 (2018). Doi: https://doi.org/10.18517/ijaseit.8.5.5808
  3. Hussein, Marwan B., Ali M. Mustafa, Makarim H. Abdulkareem, and Ahmed A. Alamiery. Comparative corrosion performance of YSZ-coated Ti-13Zr-13Nb alloy and commercially pure titanium in orthopedic implants, South African Journal of Chemical Engineering, 48, 40 (2024). Doi: https://doi.org/10.1016/j.sajce.2024.01.005
  4. Y. Ahmed and M. A. U. Rehman, Improvement in the surface properties of stainless steel via zein/hydroxyapatite composite coatings for biomedical applications, Surfaces and Interfaces, 20, 100589 (2020). Doi: https://doi.org/10.1016/j.surfin.2020.100589
  5. A. Khandan, E. Karamian, and D. Ogbemudia, The evaluation of the wettability and surface characterization of titanium implant coated by electrophoretic deposition technique, Proc. 9th National Conference of Mechanical Engineering-NCME2017, Islamic Azad University, Khomeinishahr Branch, Iran (2017). https://www.researchgate.net/publication/313315536_The_evaluation_of_the_wettability_and_surface_characterization_of_titanium_implant_coated_by_electrophoretic_deposition_technique
  6. S. Heise, M. Hohlinger, Y. T. Hernandez, J. J. P. Palacio, J. A. R. Qrtiz, V. Wagener, S. Virtanen, A. R. Boccaccini, Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta, 232, 456 (2017). Doi: https://doi.org/10.1016/j.electacta.2017.02.081
  7. N. S. Manam, W. S. W. Harun, D. N. A. Shri, S. A. C. Ghani, T. Kurniawan, M. H. Ismail, M. H. I. Ibrahim, Study of corrosion in biocompatible metals for implants: A review, Journal of Alloys and Compounds, 701, 698 (2017). Doi: https://doi.org/10.1016/j.jallcom.2017.01.196
  8. N. Eliaz, Corrosion of metallic biomaterials: A review, Materials, 12, 407 (2019). Doi: https://doi.org/10.3390/ma12030407
  9. P. Amrollahi, J. S. Krasinski, R. Vaidyanathan, L. Tayebi, and D. Vashaee, Electrophoretic deposition (EPD): Fundamentals and applications from nano-to micro-scale structures, Handbook of Nanoelectrochemistry, pp. 561-591, Springer International Publishing Switzerland (2015). Doi: https://doi.org/10.1007/978-3-319-15207-3_7-1
  10. Mohammed, Hiba K., Ahmed S. Abbas, and Ali M. Mustafa, Characteristics and properties of bright nickel plated on aluminum substrate type AA-1100, AIP Conference Proceedings, 3002, 080030 (2024). Doi: https://doi.org/10.1063/5.0206370
  11. E. Avcu, F. E. Bastan, H. Z. Abdullah, M. A. U. Rehman, Y. Y. Avcu, and A. R. Boccaccini, Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review, Progress in Materials Science, 103, 69 (2019). Doi: https://doi.org/10.1016/j.pmatsci.2019.01.001
  12. Hussein, B. Marwan, Ali M. Mustafa, and Makarim H. Abdulkareem, A Comparative Study on Dip Coating and Corrosion Behavior of Ti-13Zr-13Nb and Commercially Pure Titanium Alloys Coated with YSZ by Taguchi Design, Salud, Ciencia y Tecnologia-Serie de Conferencias, 3, 847 (2024). Doi: https://doi.org/10.56294/sctconf2024847
  13. K. Kawaguchi, M. Iijima, K. Endo, and I. Mizoguchi, Electrophoretic deposition as a new bioactive glass coating process for orthodontic stainless steel, Coatings, 7, 199 (2017). Doi: https://doi.org/10.3390/coatings7110199
  14. L. Abi Nassif et al., Electrophoretic deposition of zinc alginate coatings on stainless steel for marine antifouling applications, Journal of Environmental Chemical Engineering, 8, 104246 (2020). Doi: https://doi.org/10.1016/j.jece.2020.104246
  15. I. Aznam, J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, Electrophoretic deposition of (Cu, Mn, Co) 3O4 spinel coating on SUS430 ferritic stainless steel: process and performance evaluation for solid oxide fuel cell interconnect applications, Journal of the European Ceramic Society, 41, 1360 (2021). Doi: https://doi.org/10.1016/j.jeurceramsoc.2020.09.074
  16. M. R. Hosseini, M. Ahangari, M. H. Johar, and S. R. Allahkaram, Optimization of nano HA-SiC coating on AISI 316L medical grade stainless steel via electrophoretic deposition, Materials Letters, 285, 129097 (2021). Doi: https://doi.org/10.1016/j.matlet.2020.129097
  17. E. Vafa, R. Bazargan-Lari, and M. E. Bahrololoom, Electrophoretic deposition of polyvinyl alcohol/natural chitosan/bioactive glass composite coatings on 316L stainless steel for biomedical application, Progress in Organic Coatings, 151, 106059 (2021). Doi: https://doi.org/10.1016/j.porgcoat.2020.106059
  18. M. Mahmoudi, K. Raeissi, F. Karimzadeh, and M. A. Golozar, A study on corrosion behavior of graphene oxide coating produced on stainless steel by electrophoretic deposition, Surface and Coatings Technology, 372, 327 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.05.050
  19. L. Sorkhi, M. Farrokhi-Rad, and T. Shahrabi, Electrophoretic deposition of hydroxyapatite-chitosan-titania on stainless steel 316 L, Surfaces, 2, 458 (2019). Doi: https://doi.org/10.3390/surfaces2030034
  20. M. K. Khalaf, S. N. Mazhir, M. S. Mahdi, S. K. Taha, and M. Bououdina, Influence of RF sputtering power on surface properties and biocompatibility of 316L stainless steel alloy by deposition of TiO2 thin films, Materials Research Express, 6, 035401 (2018). Doi: https://doi.org/10.1088/2053-1591/aaf2e9
  21. S. Vaez, R. Emadi, S. Sadeghzade, H. Salimijazi, and M. Kharaziha, Electrophoretic deposition of chitosan reinforced baghdadite ceramic nano-particles on the stainless steel 316L substrate to improve biological and physical characteristics, Materials Chemistry and Physics, 282, 125991 (2022). Doi: https://doi.org/10.1016/j.matchemphys.2022.125991
  22. M. Bartmanski, B. Cieslik, J. Glodowska, P. Kalka, L. Pawlowski, M. Pieper, A. Zielinski, Electrophoretic deposition (EPD) of nanohydroxyapatite-nanosilver coatings on Ti13Zr13Nb alloy, Ceramics International, 43, 11820 (2017). Doi: https://doi.org/10.1016/j.ceramint.2017.06.026
  23. D. Sivaraj and K. Vijayalakshmi, Novel synthesis of bioactive hydroxyapatite/f-multiwalled carbon nanotube composite coating on 316L SS implant for substantial corrosion resistance and antibacterial activity, Journal of Alloys and Compounds, 777, 1340 (2019). Doi: https://doi.org/10.1016/j.jallcom.2018.10.341
  24. M. Kriswanto, M. Khairurrijal, D. L. J. Wajong, T. M. Kadarismanto, and Y. Yusuf, Stainless steel 316 L metal coating with capiz shell hydroxyapatite using electrophoretic deposition method as bone implant candidate, Key Engineering Materials, 840, 336 (2020). Doi: https://doi.org/10.4028/www.scientific.net/kem.840.336
  25. S. M. Emarati and M. Mozammel, Fabrication of super-hydrophobic titanium dioxide coating on AISI 316L stainless steel by electrophoretic deposition and using trimethoxy (propyl) silane modification, Surface Engineering, 35, 456 (2019). Doi: https://doi.org/10.1080/02670844.2018.1523104
  26. D. Hafedh, K. Kaouther, and B. C. L. Ahmed, Multi-property improvement of TiO2-WO3 mixed oxide films deposited on 316L stainless steel by electrophoretic method, Surface and Coatings Technology, 326, 45 (2017). Doi: https://doi.org/10.1016/j.surfcoat.2017.07.041
  27. Z. Zhang, J. Tang, Y. Wang, H. Wang, B. Normand, and Y. Zuo, Electrodeposition of a Pd-Ni/TiO2 composite coating on 316L SS and its corrosion behavior in hot sulfuric acid solution, Coatings, 8, 182 (2018). Doi: https://doi.org/10.3390/coatings8050182
  28. M. Alvarez-Vera, H. M. Hdz-Garcia, R. Munoz-Arroyo, J. C. Diaz-Guillen, A. I. Mtz-Enriquez, and J. L. Acevedo-Davila, Tribological study of a thin TiO2 nanolayer coating on 316L steel, Wear, 376-377, 1702 (2017). Doi: https://doi.org/10.1016/j.wear.2017.01.029
  29. H. Dhiflaoui, K. Khlifi, N. Barhoumi, and A. Ben Cheikh Larbi, The tribological and corrosion behavior of TiO2 coatings deposited by the electrophoretic deposition process, Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechnical Engineering Science, 234, 1231 (2020). Doi: https://doi.org/10.1177/0954406219890373
  30. L. Lai, H. Wu, G. Mao, Z. Li, L. Zhang, and Q. Liu, Microstructure and Corrosion Resistance of Two-Dimensional TiO2/MoS2 Hydrophobic Coating on AZ31B Magnesium Alloy, Coatings, 12, 1488 (2022). Doi: https://doi.org/10.3390/coatings12101488
  31. M. Taha Mohamed, S. A. Nawi, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, A. A. Al-Amiery, A. A. H. Kadhum, and W. K. Al-Azzawi, Revolutionizing Corrosion Defense: Unlocking the Power of Expired BCAA, Progress in Color, Colorants and Coatings, 17, 97 (2024). Doi: https://doi.org/10.30509/pccc.2023.167156.1228
  32. S. Cabanas-Polo and A. R. Boccaccini, Electrophoretic deposition of nanoscale TiO2: technology and applications, Journal of the European Ceramic Society, 36, 265 (2016). Doi: https://doi.org/10.1016/j.jeurceramsoc.2015.05.030
  33. Areege K. Abed, Ali. M. Mustafa, Ali M. Resen, Assessment Corrosion and Bioactive Behavior of Bioglass Coating on Co-Cr-Mo Alloy by Electrophoretic Deposition for Biomedical Applications, Corrosion Science and Technology, 23, 179 (2024). Doi: https://doi.org/10.14773/cst.2024.23.3.179
  34. I. Narkevica, L. Stradina, L. Stipniece, E. Jakobsons, and J. Ozolins, Electrophoretic deposition of nanocrystalline TiO2 particles on porous TiO2-X ceramic scaffolds for biomedical applications, Journal of the European Ceramic Society, 37, 3185 (2017). Doi: https://doi.org/10.1016/j.jeurceramsoc.2017.03.053
  35. C. Torres-Sanchez, F. R. A. Al Mushref, M. Norrito, K. Yendall, Y. Liu, and P. P. Conway, The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds, Materials Science and Engineering: C, 77, 219 (2017). Doi: https://doi.org/10.1016/j.msec.2017.03.249
  36. Rubaye, A. Y. I., M. T. Mohamed, M. A. I. Al-Hamid, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, A. H. Kadhum, A. A. Alamiery, and W. K. Al-Azzawi, Evaluating the corrosion inhibition efficiency of 5-(4-pyridyl)-3-mercapto-1, 2, 4-triazole for mild steel in HCl: insights from weight loss measurements and DFT calculations, International Journal of Corrosion and Scale Inhibition, 13, 185 (2024). Doi: https://doi.org/10.17675/2305-6894-2024-13-1-10
  37. A. Khalili, F. Naeimi, and A. A. Fakhrizadeh, Electrodeposited hydroxyapatite/graphene oxide/zirconia oxide composite coatings: Characterization and antibacterial activity, Advanced Ceramics Progress, 6, 8 (2020). Doi: https://doi.org/10.30501/acp.2020.233349.1037
  38. Firas F. Sayyid, Ali M. Mustafa, Slafa I. Ibrahim, Mustafa K. Mohsin, Mahdi M. Hanoon, Mohammed HH AlKaabi, A. A. H. Kadhum, Wan Nor Roslam Wan Isahak, and A. A. Al-Amiery, Gravimetric Measurements and Theoretical Calculations of 4-Aminoantipyrine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Comparative Studies, Corrosion Science and Technology, 22, 73 (2023). Doi: https://doi.org/10.14773/cst.2023.22.2.73
  39. M. Poorraeisi and A. Afshar, Synthesizing and comparing HA-TiO2 and HA-ZrO2 nanocomposite coatings on 316 stainless steel, SN Applied Sciences, 1, 155 (2019). Doi: https://doi.org/10.1007/s42452-019-0168-2
  40. A. N. Jasim, A. Mohammed, A. M. Mustafa, F. F. Sayyid, H. S. Aljibori, W. K. Al-Azzawi, A. A. AlAmiery, and E. A. Yousif, Corrosion Inhibition of Mild Steel in HCl Solution by 2-acetylpyrazine: Weight Loss and DFT Studies on Immersion Time and Temperature Effects, Progress in Color, Colorants and Coatings, 17, 333 (2024). Doi: https://doi.org/10.30509/PCCC.2024.167231.1261
  41. F. Sharifianjazi, A. H. Pakseresht, M. S. Asl, A. Esmaeilkhanian, H. W. Jang, and M. Shokouhimehr, Hydroxyapatite consolidated by zirconia: applications for dental implant, Journal of Composites and Compounds, 2, 26 (2020). Doi: https://doi.org/10.29252/jcc.2.1.4
  42. K. Castkova, H. Hadraba, A. Matousek, P. Roupcova, Z. Chlup, L. Novotna, J. Cihlar, Synthesis of Ca, Y-zirconia/hydroxyapatite nanoparticles and composites, Journal of the European Ceramic Society, 36, 2903 (2016). Doi: https://doi.org/10.1016/j.jeurceramsoc.2015.12.045
  43. F. Bollino, E. Armenia, and E. Tranquillo, Zirconia/hydroxyapatite composites synthesized via Sol-Gel: Influence of hydroxyapatite content and heating on their biological properties, Materials, 10, 757 (2017). Doi: https://doi.org/10.3390/ma10070757
  44. M. Farhadian, K. Raeissi, M. A. Golozar, S. Labbaf, T. Hajilou, and A. Barnoush, Electrophoretic deposition and corrosion performance of Zirconia-Silica composite coating applied on surface treated 316L stainless steel: Toward improvement of interface structure, Surface and Coatings Technology, 380, 125015 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.125015
  45. N. I. A. Lopes, N. H. J. Freire, P. D. Resende, L. A. Santos, and V. T. L. Buono, Electrochemical deposition and characterization of ZrO2 ceramic nanocoatings on super-elastic NiTi alloy, Applied Surface Science, 450, 21 (2018). Doi: https://doi.org/10.1016/j.apsusc.2018.04.154
  46. M. Farhadian, K. Raeissi, M. A. Golozar, S. Labbaf, T. Hajilou, and A. Barnoush, 3D-Focused ion beam tomography and quantitative porosity evaluation of ZrO2-SiO2 composite coating; amorphous SiO2 as a porosity tailoring agent, Applied Surface Science, 511, 145567 (2020). Doi: https://doi.org/10.1016/j.apsusc.2020.145567
  47. F. Saberi, B. S. Boroujeny, A. Doostmohamdi, A. R. Baboukani, and M. Asadikiya, Electrophoretic deposition kinetics and properties of ZrO2 nano coatings, Materials Chemistry and Physics, 213, 444 (2018). Doi: https://doi.org/10.1016/j.matchemphys.2018.04.050
  48. E. Moradi, M. Ebrahimian-Hosseinabadi, M. Khodaei, and S. Toghyani, Magnesium/nano-hydroxyapatite porous biodegradable composite for biomedical applications, Materials Research Express, 6, 075408 (2019). Doi: https://doi.org/10.1088/2053-1591/ab187f
  49. D. Predoi, S. C. Ciobanu, S. L. Iconaru, and M. V. Predoi, Influence of the Biological Medium on the Properties of Magnesium Doped Hydroxyapatite Composite Coatings, Coatings, 13, 409 (2023). Doi: https://doi.org/10.3390/coatings13020409
  50. J. Qu, L. Ouyang, C. Kuo, and D. C. Martin, Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films, Acta Biomaterialia, 31, 114 (2016). Doi: https://doi.org/10.1016/j.actbio.2015.11.018
  51. A. Pawlik, M. A. U. Rehman, Q. Nawaz, F. E. Bastan, G. D. Sulka, and A. R. Boccaccini, Fabrication and characterization of electrophoretically deposited chitosanhydroxyapatite composite coatings on anodic titanium dioxide layers, Electrochimica Acta, 307, 465 (2019). Doi: https://doi.org/10.1016/j.electacta.2019.03.195
  52. A. M. Mustafa, Z. S. Abdullahe, F. F. Sayyid, M. M. Hanoon, A. A. Al-Amiery, and W. N. R. W. Isahak, 3-Nitrobenzaldehyde-4-phenylthiosemicarbazone as Active Corrosion Inhibitor for Mild Steel in a Hydrochloric Acid Environment, Progress in Color, Colorants and Coatings, 15, 285 (2022). Doi: https://doi.org/10.30509/pccc.2021.166869.1127
  53. L. Fathyunes and J. Khalil-Allafi, Characterization and corrosion behavior of graphene oxide-hydroxyapatite composite coating applied by ultrasound-assisted pulse electrodeposition, Ceram Int, 43, 13885 (2017). Doi: https://doi.org/10.1016/j.ceramint.2017.07.113
  54. L. Fathyunes, J. Khalil-Allafi, S. O. R. Sheykholeslami, and M. Moosavifar, Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition, Materials Science and Engineering: C, 87, 10 (2018). Doi: https://doi.org/10.1016/j.msec.2018.02.012
  55. E. Yilmaz, B. Cakiroglu, A. Gokce, F. Findik, H. O. Gulsoy, N. Gulsoy, O. Mutlu, M. Ozacar, Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition, Materials Science and Engineering: C, 101, 292 (2019). Doi: https://doi.org/10.1016/j.msec.2019.03.078
  56. S. A. X. Stango and U. Vijayalakshmi, Electrochemical deposition of HAP/f-MWCNTs and HAP/GO composite layers on 316L SS implant with excellent corrosion resistance performance, Materials Letters, 304, 130666 (2021). Doi: https://doi.org/10.1016/j.matlet.2021.130666
  57. N. N. Nicomedes, L. M. Mota, R. Vasconcellos, N. V. Medrado, M. de Oliveira, E. C. de Alvarenga, K. R. C. Juste, A. Righi, S. M. Manhabosco, G. J. B. Silva, F. G. S. Araujo, A. B. de Oliveira, R. J. C. Batista, J. D. S. Soares, T. M. Manhabosco, Comparison between hydroxyapatite/soapstone and hydroxyapatite/reduced graphene oxide composite coatings: Synthesis and property improvement, Journal of the Mechanical Behavior of Biomedical Materials, 121, 104618 (2021). Doi: https://doi.org/10.1016/j.jmbbm.2021.104618
  58. H. Maleki-Ghaleh and J. Khalil-Allafi, Characterization, mechanical and in vitro biological behavior of hydroxyapatite-titanium-carbon nanotube composite coatings deposited on NiTi alloy by electrophoretic deposition, Surface and Coatings Technology, 363, 179 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.02.029
  59. M. khethier Abbass, A. N. Jasim, M. Jasim, K. S. Khashan, and M. J. Issa, Improving Bio Corrosion Resistance of the Single Layer of Nano Hydroxyapatite and Nano YSZ Coating on the Ti6Al4V Alloy Using Electrophoretic Deposition, Solid State Technology, 63, 18584 (2020). https://solidstatetechnology.us/index.php/JSST/article/view/7999
  60. A. S. Khan and M. Awais, Low-cost deposition of antibacterial ion-substituted hydroxyapatite coatings onto 316L stainless steel for biomedical and dental applications, Coatings, 10, 880 (2020). Doi: https://doi.org/10.3390/coatings10090880
  61. P. Bansal, G. Singh, and H. S. Sidhu, Investigation of surface properties and corrosion behavior of plasma sprayed HA/ZnO coatings prepared on AZ31 Mg alloy, Surface and Coatings Technology, 401, 126241 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126241
  62. B. Priyadarshini, M. Rama, Chetan, and U. Vijayalakshmi, Bioactive coating as a surface modification technique for biocompatible metallic implants: a review, Journal of Asian Ceramic Societies, 7, 397 (2019). Doi: https://doi.org/10.1080/21870764.2019.1669861
  63. Y. H. Jeong, W. A. Brantley, and H. C. Choe, AC impedance behavior of silicon-hydroxyapatite doped film on the Ti-35Nb-xZr alloy by EB-PVD method, Surface and Coatings Technology, 228, S505 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2012.04.075
  64. H. C. Choe, Photofunctionalization of EB-PVD HA-coated nano-pore surface of Ti-30Nb-xZr alloy for dental implants, Surface and Coatings Technology, 228, S470 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2012.05.018
  65. S. H. Kim, Y. H. Jeong, H. C. Choe, and W. A. Brantley, Morphology change of HA films on highly ordered nanotubular Ti-Nb-Hf alloys as a function of electrochemical deposition cycle, Surface and Coatings Technology, 259, 281 (2014). Doi: https://doi.org/10.1016/j.surfcoat.2014.03.006
  66. H. J. Kim, Y. H. Jeong, H. C. Choe, and W. A. Brantley, Surface characteristics of hydroxyapatite coatings on nanotubular Ti-25Ta-xZr alloys prepared by electrochemical deposition, Surface and Coatings Technology, 259, 274 (2014). Doi: https://doi.org/10.1016/j.surf-coat.2014.03.013