Acknowledgement
This work is supported by the National Key Research and Development Program of China (2022YFD1301001) and the China Agricultural Research System (CARS-36).
References
- Kim SH, Ramos SC, Valencia RA, Cho YI, Lee SS. Heat stress: effects on rumen microbes and host physiology, and strategies to alleviate the negative impacts on lactating dairy cows. Front Microbiol 2022;13:804562. https://doi.org/10.3389/fmicb.2022.804562
- Aleena J, Sejian V, Bagath M, Krishnan G, Beena V, Bhatta R. Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. Int J Biometeorol 2018;62:1995-2005. https://doi.org/10.1007/s00484-018-1604-5
- Parida S, Mishra SR, Mishra C, et al. Impact of heat stress on transcriptional abundance of HSP70 in cardiac cells of goat. Anim Biotechnol 2020;31:223-8. https://doi.org/10.1080/10495398.2019.1583574
- Pragna P, Sejian V, Bagath M, et al. Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J Anim Physiol Anim Nutr (Berl) 2018;102:825-36. https://doi.org/10.1111/jpn.12892
- Bohmanova J, Misztal I, Cole JB. Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci 2007;90:1947-56. https://doi.org/10.3168/jds.2006-513
- Hou Y, Zhang L, Dong RY, et al. Comparing responses of dairy cows to short-term and long-term heat stress in climatecontrolled chambers. J Dairy Sci 2021;104:2346-56. https://doi.org/10.3168/jds.2020-18946
- Tajima K, Nonaka I, Higuchi K, et al. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007;13:57-64. https://doi.org/10.1016/j.anaerobe.2006.12.001
- Min L, Zhao S, Tian H, et al. Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows. Int J Biometeorol 2017;61:1149-58. https://doi.org/10.1007/s00484-016-1283-z
- Zhong S, Ding Y, Wang Y, et al. Temperature and humidity index (THI)-induced rumen bacterial community changes in goats. Appl Microbiol Biotechnol 2019;103:3193-203. https://doi.org/10.1007/s00253-019-09673-7
- Pinto S, Hoffmann G, Ammon C, Amon T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J Therm Biol 2020;88:102523. https://doi.org/10.1016/j.jtherbio.2020.102523
- Broderick GA, Clayton MK. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J Dairy Sci 1997;80:2964-71. https://doi.org/10.3168/jds.S0022-0302(97)76262-3
- Liang YS, Li GZ, Li XY, et al. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype. J Anim Sci 2017;95:1727-38. https://doi.org/10.2527/jas.2016.1134
- Magoc T, Salzberg SL. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011; 27:2957-63. https://doi.org/10.1093/bioinformatics/btr507
- Edgar RC. Uparse: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 2013;10:996-8. https://doi.org/10.1038/nmeth.2604
- Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41. https://doi.org/10.1128/AEM.01541-09
- Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
- Otasek D, Morris JH, Boucas J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol 2019;20:185. https://doi.org/10.1186/s13059-019-1758-4
- Desnottes JF, Diallo N, Loubeyre C, Moreau N. Effect of pefloxacin on microorganism: host cell interaction. J Antimicrob Chemother 1990;26 Suppl B:17-26. https://doi.org/10.1093/jac/26.suppl_b.17
- Xue MY, Sun HZ, Wu XH, Guan LL, Liu JX. Assessment of rumen bacteria in dairy cows with varied milk protein yield. J Dairy Sci 2019;102:5031-41. https://doi.org/10.3168/jds.2018-15974
- Betancur-Murillo CL, Aguilar-Marin SB, Jovel J. Prevotella: a key player in ruminal metabolism. Microorganisms 2022;11:1. https://doi.org/10.3390/microorganisms11010001
- Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021;19:585-99. https://doi.org/10.1038/s41579-021-00559-y
- Bass AR, Abdel-Wahab N, Reid PD, et al. Comparative safety and effectiveness of TNF inhibitors, IL6 inhibitors and methotrexate for the treatment of immune checkpoint inhibitor-associated arthritis. Ann Rheum Dis 2023;82:920-6. https://doi.org/10.1136/ard-2023-223885
- Wang D, Tang G, Zhao L, et al. Potential roles of the rectum keystone microbiota in modulating the microbial community and growth performance in goat model. J Anim Sci Biotechnol 2023;14:55. https://doi.org/10.1186/s40104-023-00850-3
- Contreras-Jodar A, Salama AA, Hamzaoui S, Vailati-Riboni M, Caja G, Loor JJ. Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J Dairy Res 2018;85:423-30. https://doi.org/10.1017/S0022029918000705
- Bach A, Lopez-Garcia A, Gonzalez-Recio O, et al. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J Dairy Sci 2019;102:6180-98. https://doi.org/10.3168/jds.2018-16105
- Wallace RJ, Rooke JA, McKain N, et al. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 2015;16:839. https://doi.org/10.1186/s12864-015-2032-0
- Cao N, Wu H, Zhang XZ, Meng QX, Zhou ZM. Calcium propionate supplementation alters the ruminal bacterial and archaeal communities in pre- and postweaning calves. J Dairy Sci 2020;103:3204-18. https://doi.org/10.3168/jds.2019-16964
- Wang W, Han D, Cai Q, et al. MAPK4 promotes triple negative breast cancer growth and reduces tumor sensitivity to PI3K blockade. Nat Commun 2022;13:245. https://doi.org/10.1038/s41467-021-27921-1
- Zhao C, Hu X, Qiu M, et al. Sialic acid exacerbates gut dysbiosis-associated mastitis through the microbiota-gutmammary axis by fueling gut microbiota disruption. Microbiome 2023;11:78. https://doi.org/10.1186/s40168-023-01528-8