과제정보
The authors thank Di Han for help in collecting skin samples from the goats.
참고문헌
- Zhu Y, Wang Y, Zhao J, et al. CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Anim Biotechnol 2023;34:482-94. https://doi.org/10.1080/10495398.2021.1975729
- Jiao Q, Wang YR, Zhao JY, Wang ZY, Guo D, Bai WL. Identification and molecular analysis of cashmere goat lncRNAs reveal their integrated regulatory network and potential roles in secondary hair follicle. Anim Biotechnol 2021;32:719-32. https://doi.org/10.1080/10495398.2020.1747477
- Geng R, Yuan C, Chen Y. Exploring differentially expressed genes by RNA-Seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PLoS One 2013;8:e62704. https://doi.org/10.1371/journal.pone.0062704
- Geng R, Wang L, Wang X, Chen Y. Cyclic expression of Lhx2 is involved in secondary hair follicle development in cashmere goat. Gene Expr Patterns 2014;16:31-5. https://doi.org/10.1016/j.gep.2014.07.004
- Bai WL, Dang YL, Yin RH, et al. Differential expression of microRNAs and their Regulatory networks in skin tissue of liaoning cashmere goat during hair follicle cycles. Anim Biotechnol 2016;27:104-12. https://doi.org/10.1080/10495398.2015.1105240
- Zhao J, Shen J, Wang Z, et al. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression. Arch Anim Breed 2022;65:55-67. https://doi.org/10.5194/aab-65-55-2022
- Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK, Mikkola ML. Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells 2016;34:1896-908. https://doi.org/10.1002/stem.2363
- Yin R, Wang Y, Wang Z, et al. Discovery and molecular analysis of conserved circRNAs from cashmere goat reveal their integrated regulatory network and potential roles in secondary hair follicle. Electron J Biotechnol 2019;41:37-47. https://doi.org/10.1016/j.ejbt.2019.06.004
- Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017;27:626-41. https://doi.org/10.1038/cr.2017.31
- Rao X, Lai L, Li X, Wang L, Li A, Yang Q. N6 -methyladenosine modification of circular RNA circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305. IUBMB Life 2021;73:408-17. https://doi.org/10.1002/iub.2438
- Hui T, Zhu Y, Shen J, et al. Identification and molecular analysis of m6A-circRNAs from cashmere goat reveal their integrated regulatory network and putative functions in secondary hair follicle during anagen stage. Animals (Basel) 2022;12:694. https://doi.org/10.3390/ani12060694
- Yin R, Yin R, Bai M, et al. N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats. Anim Biosci 2023;36:555-69. https://doi.org/10.5713/ab.22.0211
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.
- Chen Z, Ling K, Zhu Y, Deng L, Li Y, Liang Z. circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun 2021;551:114-20. https://doi.org/10.1016/j.bbrc.2021.03.020
- Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011;27:431-2. https://doi.org/10.1093/bioinformatics/btq675
- Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 2013;29:661-3. https://doi.org/10.1093/bioinformatics/btt019
- Muppirala UK, Lewis BA, Dobbs D. Computational tools for investigating RNAprotein interaction partners. J Comput Sci Syst Biol 2013;6:182-7. https://doi.org/10.4172/jcsb.1000115
- Tang D, Chen M, Huang X, et al. SRplot: A free online platform for data visualization and graphing. PLoS One 2023;18:e0294236. https://doi.org/10.1371/journal.pone.0294236
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Kumaki Y, Oda M, Okano M. QUMA: quantification tool for methylation analysis. Nucleic Acids Res 2008;36:W170-5. https://doi.org/10.1093/nar/gkn294
- Wang S, Chai P, Jia R, Jia R. Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword. Mol Cancer 2018;17:101. https://doi.org/10.1186/s12943-018-0847-4
- Su R, Fan Y, Qiao X, et al. Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen. PLoS One 2018;13:e0204404. https://doi.org/10.1371/journal.pone.0204404
- Sinha T, Panigrahi C, Das D, Chandra Panda A. Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA 2022;13:e1685. https://doi.org/10.1002/wrna.1685
- Lin YC, Wang YC, Lee YC, et al. CircVIS: a platform for circRNA visual presentation. BMC Genomics 2022;22:921. https://doi.org/10.1186/s12864-022-08650-1
- Yuan C, Wang X, Geng R, He X, Qu L, Chen Y. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genomics 2013;14:511. https://doi.org/10.1186/1471-2164-14-511
- Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 2015;90:1179-96. https://doi.org/10.1111/brv.12151
- Zhang Y, Yu J, Shi C, et al. Lef1 contributes to the differentiation of bulge stem cells by nuclear translocation and cross-talk with the Notch signaling pathway. Int J Med Sci 2013;10:738-46. https://doi.org/10.7150/ijms.5693
- Yu BD, Becker-Hapak M, Snyder EL, Vooijs M, Denicourt C, Dowdy SF. Distinct and nonoverlapping roles for pRB and cyclin D:cyclin-dependent kinases 4/6 activity in melanocyte survival. Proc Natl Acad Sci USA 2003;100:14881-6. https://doi.org/10.1073/pnas.2431391100
- Lay K, Kume T, Fuchs E. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci USA 2016;113:E1506-15. https://doi.org/10.1073/pnas.1601569113
- Kim J, Kim SR, Choi YH, et al. Quercitrin stimulates hair growth with enhanced expression of growth factors via activation of MAPK/CREB signaling pathway. Molecules 2020;25:4004. https://doi.org/10.3390/molecules25174004
- Lu Q, Gao Y, Fan Z, et al. Amphiregulin promotes hair regeneration of skin-derived precursors via the PI3K and MAPK pathways. Cell Prolif 2021;54:e13106. https://doi.org/10.1111/cpr.13106
- Sennett R, Wang Z, Rezza A, et al. An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin. Dev Cell 2015;34:577-91. https://doi.org/10.1016/j.devcel.2015.06.023
- Kang JI, Choi YK, Han SC, et al. 5-bromo-3,4-dihydroxybenzaldehyde promotes hair growth through activation of Wnt/β-catenin and autophagy pathways and inhibition of TGF-β pathways in dermal papilla cells. Molecules 2022;27:2176. https://doi.org/10.3390/molecules27072176
- Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics 2011;12:489. https://doi.org/10.1186/1471-2105-12-489
- Chi C, Hou W, Zhang Y, et al. PDHB-AS suppresses cervical cancer progression and cisplatin resistance via inhibition on Wnt/β-catenin pathway. Cell Death Dis 2023;14:90. https://doi.org/10.1038/s41419-022-05547-5
- Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006;25:2781-91. https://doi.org/10.1038/sj.emboj.7601166
- Wang G, Wu H, Liang P, He X, Liu D. Fus knockdown inhibits the profibrogenic effect of cardiac fibroblasts induced by angiotensin II through targeting Pax3 thereby regulating TGF-β1/Smad pathway. Bioengineered 2021;12:1415-25. https://doi.org/10.1080/21655979.2021.1918522
- Polycarpou-Schwarz M, Gunderson SI, Kandels-Lewis S, Seraphin B, Mattaj IW. Drosophila SNF/D25 combines the functions of the two snRNP proteins U1A and U2B' that are encoded separately in human, potato, and yeast. RNA 1996;2:11-23
- Luo Y, Lin J, Zhang Y, Dai G, Li A, Liu X. LncRNA PCAT6 predicts poor prognosis in hepatocellular carcinoma and promotes proliferation through the regulation of cell cycle arrest and apoptosis. Cell Biochem Funct 2020;38:895-904. https://doi.org/10.1002/cbf.3510
- Lien WH, Polak L, Lin M, Lay K, Zheng D, Fuchs E. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol 2014;16:179-90. https://doi.org/10.1038/ncb2903
- Dai Z, Sezin T, Chang Y, Lee EY, Wang EHC, Christiano AM. Induction of T cell exhaustion by JAK1/3 inhibition in the treatment of alopecia areata. Front Immunol 2022;13:955038. https://doi.org/10.3389/fimmu.2022.955038
- Yang X, Han F, Hu X, et al. EIF4A3-induced Circ_0001187 facilitates AML suppression through promoting ubiquitin-proteasomal degradation of METTL3 and decreasing m6A modification level mediated by miR-499a-5p/RNF113A pathway. Biomark Res 2023;11:59. https://doi.org/10.1186/s40364-023-00495-4
- Daugela L, Nusgen N, Walier M, Oldenburg J, Schwaab R, El-Maarri O. Measurements of DNA methylation at seven loci in various tissues of CD1 mice. PLoS One 2012;7:e44585. https://doi.org/10.1371/journal.pone.0044585
- Xu J, Wang Z, Li S, et al. Combinatorial epigenetic regulation of non-coding RNAs has profound effects on oncogenic pathways in breast cancer subtypes. Brief Bioinform 2018;19:52-64. https://doi.org/10.1093/bib/bbw099
- Jakobsen T, Dahl M, Dimopoulos K, Gronbaek K, Kjems J, Kristensen LS. Genome-wide circular RNA expression patterns reflect resistance to immunomodulatory drugs in multiple myeloma cells. Cancers (Basel) 2021;13:365. https://doi.org/10.3390/cancers13030365
- Yang Z, Xu F, Teschendorff AE, et al. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022;9:1067406. https://doi.org/10.3389/fmolb.2022.1067406
- Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 2018;19:218. https://doi.org/10.1186/s13059-018-1594-y
- Han W, Yang F, Wu Z, et al. Inner mongolian cashmere goat secondary follicle development regulation research based on mRNA-miRNA Co-analysis. Sci Rep 2020;10:4519. https://doi.org/10.1038/s41598-020-60351-5