DOI QR코드

DOI QR Code

Samae Dam chicken: a variety of the Pradu Hang Dam breed revealed from microsatellite genotyping data

  • Nivit Tanglertpaibul (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Trifan Budi (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Chien Phuoc Tran Nguyen (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Worapong Singchat (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Wongsathit Wongloet (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Nichakorn Kumnan (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Piangjai Chalermwong (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Anh Huynh Luu (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Kantika Noito (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Thitipong Panthum (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Pish Wattanadilokchatkun (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Anuphong Payopat (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Natthamon Klinpetch (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Aingorn Chaiyes (School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University) ;
  • Kanithaporn Vangnai (Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University) ;
  • Chotika Yokthongwattana (Department of Biochemistry, Faculty of Science, Kasetsart University) ;
  • Chomdao Sinthuvanich (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Syed Farhan Ahmad (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Narongrit Muangmai (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Kyudong Han (Department of Microbiology, Dankook University) ;
  • Mitsuo Nunome (Department of Zoology, Faculty of Science, Okayama University of Science) ;
  • Akihiko Koga (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Prateep Duengkae (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Sompon Waipanya (Department of Livestock Development, Ministry of Agriculture and Cooperative) ;
  • Yoichi Matsuda (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Kornsorn Srikulnath (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University)
  • Received : 2024.03.15
  • Accepted : 2024.05.28
  • Published : 2024.12.01

Abstract

Objective: The remarkable adaptability to the environment, high growth rate, meat with good taste and aroma, and ornamental appearance of the Pradu Hang Dam (PDH) and Samae Dam (SD) chickens make them valuable for improvement of poultry production to enhance food security. However, despite their close phenotypic similarity, distinct classification of PDH and SD chickens remains controversial. Thus, this study aimed to clarify genetic origins and variation between PDH and SD chickens, genetic diversity and structures of PDH and SD chickens. Methods: This study analyzed 5 populations of PDH and 2 populations of SD chickens using 28 microsatellite markers and compared with those of other indigenous and local chicken breeds using Thailand's "The Siam Chicken Bioresource Project" database. Results: Considerably high genetic variability was observed within PDH (370 total alleles; 4.086±0.312 alleles/locus) and SD chickens (179 total alleles; 3.607±0.349 alleles/locus). A partial overlap of gene pools was observed between SD chickens from the Department of Livestock, Uthai Thani (SD1) and PDH chickens, suggesting a potentially close relationship between the two chicken breeds. A gene pool that partially overlapped with that of the red junglefowl was observed in the SD chicken population from the Sanhawat Farm Uthai Thani population (SD2). Distinct subclusters were observed within SD chickens, indicating the possibility that genetic differentiation occurred early in the process of establishment of SD chickens. Conclusion: These findings could offer valuable insights into genetic verification of Thai local chicken breeds and their sustainable conservation and utilization.

Keywords

Acknowledgement

We thank the Department of Livestock Development, the Ministry of Agriculture and Cooperatives, Thailand and Sanhawat Farm Uthai Thani, Thailand, for helping us to collect samples. We thank the Center for Agricultural Biotechnology (CAB) at Kasetsart University Kamphaeng Saen Campus and the NSTDA Supercomputer Center (ThaiSC) for supporting us with server analysis services. We also thank the Faculty of Science at Kasetsart University (no. 6501.0901.1-71; 6501.0901.1432; 6501.0901.1-331; 6501. 0901.1-336; and 6501.0901.1-473), and the Betagro Group for providing research facilities.

References

  1. Gerber P, Mooney HA, Dijkman J, Tarawali S, de Haan C. Livestock in a changing landscape: experiences and regional perspectives. Washington, DC, USA: Island Press; 2010. Available from: https://www.fao.org/3/am075e/am075e.pdf
  2. Choprakarn K, Wongpichet K. Village chicken production systems in Thailand. In: Proceedings of the International Poultry Conference 2007; 2007 Nov 5-7; Bangkok, Thailand. Rome, Italy: Food and Agriculture Organization; 2007. 569 p.
  3. Laenoi W, Buranawit K. Productive performance of purebred Thai native black-bone chickens (Chee Fah and Fah Luang) and their crossbreds. Indian J Anim Res 2019;56:637-41. https://doi.org/10.18805/ijar.b-1075
  4. Malaithong W, Supa-Udomlerk TS, Kiratikankul S. Key success factors of Thai indigenous (pradu hangdam) chicken breeder raising of networking farmers at maesai sub district. Khon Kaen Agric J 2015;43(Suppl 2):38-41.
  5. Sayyadad V, Cheva-Isarakul B, Tangtaweewipat S. Optimum levels of crude protein and metabolizable energy in diet as well as sexual effect on performance and carcass of Thai Native Crossbred Chicken (Pradu Hang Dam x Hubbard JA 57 Ki) during 1-13 weeks of age. Songklanakarin J Sci Technol 2023;45:146-55.
  6. Wattanadilokcahtkun P, Chalermwong P, Singchat W, et al. Genetic admixture and diversity in Thai domestic chickens revealed through analysis of Lao Pa Koi fighting cocks. PLoS ONE 2023;18:e0289983. https://doi.org/10.1371/journal.pone.0289983
  7. Wiyabot T, Kiattinarueyut S. Development and identifying quantitative and quantities traits for breeding of Samae Dam Chicken (Gallus gallus), Thailand: diversity of phenotypic characteristics. J Hellenic Vet Med Soc 2022;73:4763-72. https://doi.org/10.12681/jhvms.27405
  8. Hata A, Nunome M, Suwanasopee T, et al. Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens. Sci Rep 2021;11:2035. https://doi.org/10.1038/s41598-021-81589-7
  9. Singchat W, Chaiyes A, Wongloet W, et al. Red junglefowl resource management guide: bioresource reintroduction for sustainable food security in Thailand. Sustainability 2022;14:7895. https://doi.org/10.3390/su14137895
  10. Budi T, Singchat W, Tanglertpaibul N, et al. Thai local chicken breeds, Chee Fah and Fah Luang, originated from Chinese black-boned chicken with introgression of red junglefowl and domestic chicken breeds. Sustainability 2023;15:6878. https://doi.org/10.3390/su15086878
  11. Budi T, Singchat W, Tanglertpaibul N, et al. Research note: possible influence of thermal selection on patterns of HSP70 and HSP90 gene polymorphisms in Thai indigenous and local chicken breeds and red junglefowls. Poult Sci 2024;103:103503. https://doi.org/10.1016/j.psj.2024.103503
  12. Rasoarahona R, Wattanadilokchatkun P, Panthum T, et al. Optimizing microsatellite marker panels for genetic diversity and population genetic studies: an ant colony algorithm approach with polymorphic information content. Biology 2023;12:1280. https://doi.org/10.3390/biology12101280
  13. Wongloet W, Singchat, W, Chaiyes A, et al. Environmental and socio-cultural factors impacting the unique gene pool pattern of Mae Hong-Son chicken. Animals 2023;13:1949. https://doi.org/10.3390/ani13121949
  14. Goudet J. FSTAT: a computer program to calculate F-statistics. J Hered 1995;86:485-6. https://doi.org/10.1093/oxfordjournals.jhered.a111627
  15. Park SDE. The Excel microsatellite toolkit [Internet]. Dublin, Ireland: Animal Genomics Laboratory, University College Dublin; c2001 [cited 2024 May 15].
  16. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012;28:2537-9. https://doi.org/10.1093/bioinformatics/bts460
  17. Jombart T. adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 2008;24:1403-5. https://doi.org/10.1093/genetics/155.2.945
  18. R Core Team. R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; c2022 [cited 2024 May 15]. Available from: https://cran.r-project.org/bin/windows/base/
  19. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155:945-59. https://doi.org/10.1093/genetics/155.2.945
  20. Wilson GA, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003;163:117791. https://doi.org/10.1093/genetics/163.3.1177
  21. Beerli P, Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 2001;98:4563-8. https://doi.org/10.1073/pnas.081068098
  22. Beerli P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 2006;22:341-5. https://doi.org/10.1093/bioinformatics/bti803
  23. Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009;19:1639-45. https://doi.org/10.1101/gr.092759.109
  24. Garza JC, Williamson EG. Detection of reduction in population size using data from microsatellite loci. Mol Ecol 2001;10:30518. https://doi.org/10.1046/j.1365-294x.2001.01190.x
  25. Rosenberg NA, Burke T, Elo K, et al. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 2001;159:699-713. https://doi.org/10.1093/genetics/159.2.699
  26. Carlsson J. Effects of microsatellite null alleles on assignment testing. J Hered 2008;99:616-23. https://doi.org/10.1093/jhered/esn048
  27. Wongloet W, Kongthong, P, Chaiyes, et al. Genetic monitoring of the last captive population of greater mouse-deer on the Thai Mainland and prediction of habitat suitability before reintroduction. Sustainability 2023;15:3112. https://doi.org/10.3390/su15043112
  28. Kinghorn B, Kinghorn A. Management of diversity and inbreeding when importing new stock into an inbred population. J Hered 2023;114:492-503. https://doi.org/10.1093/jhered/esad027
  29. Garamszegi LZ, Temrin H, Kubinyi E, Miklosi A, Kolm A. The role of common ancestry and gene flow in the evolution of human-directed play behaviour in dogs. J Evol Biol 2020;33:318-28. https://doi.org/10.1111/jeb.13567
  30. Phianmongkhol A, Wirjantoro TI, Chailungka C, Prathum C, Leotaragul A. Public perception in Thai native chicken (Pradu Hang-Dum Chiang Mai) via food contests. In: Proceeding of the 2nd International Seminar on Animal Industry 2012; 2012 Jul 5-6; Jakarta, Indonesia. Bogor, Indonesia: Faculty of Animal Science Bogor Agricultural University; 2012. pp. 656-62.
  31. Suayroop N, Charoensin S, Vongpralub T, Haitook T, Laopaiboon B, Kummeng T. Comparative study on cholesterol level in plasma of crossbred chicken from pradu-hangdam MKb. 55 sire and layer chicken dam. Khon Kaen Agric J 2015;43(Suppl 2):242-4.
  32. FAO (Food and Agriculture Organization). Report on the state of the world's animal genetic resources [Internet]. Rome, Italy: FAO; c2001 [cited 2024 Jan 21]. Available from: https://www.fao.org/3/y1100m/y1100m03.htm
  33. Scherf BD, Pilling D. The second report on the state of the world's animal genetic resources for food and agriculture [Internet]. Rome, Italy: FAO; c2015 [cited 2024 Jan 21]. Available from: https://openknowledge.fao.org/server/api/core/bitstreams/464ecee6-d55c-407d-93bb-e9890ee88058/content