과제정보
We sincerely appreciate the researchers who shared tran-scriptome and proteome data of the 60-day-old embryonic muscle tissues from Tibetan and Large White pigs.
참고문헌
- Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS ONE 2020;15:e0233372. https://doi.org/10.1371/journal.pone.0233372
- Dwyer CM, Fletcher JM, Stickland NC. Muscle cellularity and postnatal growth in the pig. J Anim Sci 1993;71:3339-43. https://doi.org/10.2527/1993.71123339x
- Stickland NC, Handel SE. The numbers and types of muscle fibres in large and small breeds of pigs. J Anat 1986;147:181-9.
- Zhao X, Mo DL, Li AN, et al. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS ONE 2011;6:e19774. https://doi.org/10.1371/journal.pone.0019774
- Picard B, Lefaucheur L, Berri C, Duclos MJ. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev 2002;42:415-31. https://doi.org/10.1051/rnd:2002035
- Bharathy N, Ling BMT, Taneja R. Epigenetic regulation of skeletal muscle development and differentiation. In: Kundu TK, editor. Epigenetics: development and disease. Subcellular biochemistry. Dordrecht, The Netherlands: Springer; 2013. pp. 139-50. https://doi.org/10.1007/978-94-007-4525-4_7
- Brand-Saberi B, Christ B. Genetic and epigenetic control of muscle development in vertebrates. Cell Tissue Res 1999;296:199-212. https://doi.org/10.1007/s004410051281
- Ludolph DC, Konieczny SF. Transcription factor families: muscling in on the myogenic program. FASEB J 1995;9:1595. https://doi.org/10.1096/fasebj.9.15.8529839
- Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 2004;27:219-40. https://doi.org/10.1016/j.domaniend.2004.06.007
- Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013;280:4294-314. https://doi.org/10.1111/febs.12253
- Schiaffino S, Reggiani C, Akimoto T, Blaauw B. Molecular mechanisms of skeletal muscle hypertrophy. J Neuromuscul Dis 2021;8:169-83. https://doi.org/10.3233/jnd-200568
- Zhang X, Chen Y, Pan J, et al. iTRAQ-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig. BMC Genomics 2016;17:137. https://doi.org/10.1186/s12864-016-2464-1
- Cagnazzo M, te Pas MFW, Priem J, et al. Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J Anim Sci 2006;84:1-10. https://doi.org/10.2527/2006.8411
- Davoli R, Braglia S, Russo V, Varona L, te Pas MFW. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet 2011;128:15-27. https://doi.org/10.1111/j.1439-0388.2010.00867.x
- Wang LY, Li XX, Ma J, Zhang YW, Zhang H. Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Sci Rep 2017;7:3837. https://doi.org/10.1038/s41598-017-04178-7
- Shang P, Wang ZX, Chamba YZ, Zhang B, Zhang H, Wu C. A comparison of prenatal muscle transcriptome and proteome profiles between pigs with divergent growth phenotypes. J Cell Biochem 2019;120:5277-86. https://doi.org/10.1002/jcb.27802
- Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:profiler. F1000Res 2020;9:709. https://doi.org/10.12688/f1000research.24956.2
- Yang CC, Gong AF. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Int J Med Sci 2021;18:792-800. https://doi.org/10.7150/ijms.47339
- Thomson DM. The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration. Int J Mol Sci 2018;19:3125. https://doi.org/10.3390/ijms19103125
- Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 2020;9:1970. https://doi.org/10.3390/cells9091970
- Lebrasseur NK, Cote GM, Miller TA, Fielding RA, Sawyer DB. Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle. Am J Physiol Cell Physiol 2003;284:C1149-55. https://doi.org/10.1152/ajpcell.00487.2002
- Majmundar AJ, Lee DSM, Skuli N, et al. HIF modulation of Wnt signaling regulates skeletal myogenesisin vivo. Development 2015;142:2405-12. https://doi.org/10.1242/dev.123026
- Guo Y, Wang M, Ge J, et al. Bioactive biodegradable poly-citrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway. Bioact Mater 2020;5:486-95. https://doi.org/10.1016/j.bioactmat.2020.04.004
- Park JW, Lee JH, Han JS, Shin SP, Park TS. Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts. Mol Biol Rep 2020;47:9531-40. https://doi.org/10.1007/s11033-020-05935-0
- Adolf IC, Almars A, Dharsee N, et al. HLA-G and single nucleotide polymorphism (SNP) associations with cancer in African populations: implications in personal medicine. Genes Dis 2021;9:1220-33. https://doi.org/10.1016/j.gendis.2021.06.004
- Hecht M, Bromberg Y, Rost B. News from the protein mutability landscape. J Mol Biol 2013;425:3937-48. https://doi.org/10.1016/j.jmb.2013.07.028
- Bartoszewski R, Kroliczewski J, Piotrowski A, et al. Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cell Mol Biol Lett 2016;21:23. https://doi.org/10.1186/s11658-016-0025-x
- Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, et al. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 2014;6:299-311. https://doi.org/10.1093/jmcb/mju025
- Davey JR, Watt KI, Parker BL, et al. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight 2016;1:e85477. https://doi.org/10.1172/jci.insight.85477
- Helinska A, Krupa M, Archacka K, et al. Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. Eur J Cell Biol 2017;96:47-60. https://doi.org/10.1016/j.ejcb.2016.12.001
- Chan SSK, Hagen HR, Swanson SA, et al. Development of bipotent cardiac/skeletal myogenic progenitors from MESP1+ mesoderm. Stem Cell Rep 2016;6:26-34. https://doi.org/10.1016/j.stemcr.2015.12.003
- Stanley A, Tichy ED, Kocan J, Roberts DW, Shore EM, Mourkioti F. Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva. NPJ Regen Med 2022;7:5. https://doi.org/10.1038/s41536-021-00201-8
- Zhang Y, Beketaev I, Ma YL, Wang J. Sumoylation-deficient phosphoglycerate mutase 2 impairs myogenic differentiation. Front Cell Dev Biol 2022;10:1052363. https://doi.org/10.3389/fcell.2022.1052363
- Xu M, Chen X, Chen D, Yu B, Huang Z. FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget 2017;8:10662-74. https://doi.org/10.18632/oncotarget.12891
- Zhang L, Zhou Q, Zhang J, et al. Liver transcriptomic and proteomic analyses provide new insight into the pathogenesis of liver fibrosis in mice. Genomics 2023;115:110738. https://doi.org/10.1016/j.ygeno.2023.110738
- Chen L, Tang F, Gao H, Zhang X, Li X, Xiao D. CAPN3: a muscle-specific calpain with an important role in the pathogenesis of diseases (Review). Int J Mol Med 2021;48:203. https://doi.org/10.3892/ijmm.2021.5036
- Lamber EP, Guicheney P, Pinotsis N. The role of the M-band myomesin proteins in muscle integrity and cardiac disease. J Biomed Sci 2022;29:18. https://doi.org/10.1186/s12929-022-00801-6
- Pearson AM. Muscle growth and exercise. Crit Rev Food Sci Nutr 1990;29:167-96. https://doi.org/10.1080/10408399009527522
- Rehfeldt C, Te Pas MFW, Wimmers K, et al. Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. regulation of myogenesis and environmental impact. Animal 2011;5:703-17. https://doi.org/10.1017/s1751731110002089