참고문헌
- Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins 2016;8:73. https://doi.org/10.3390/toxins8030073
- Bendary MM, Abd El-Hamid MI, El-Tarabili RM, et al. Clostridium perfringens associated with foodborne infections of animal origins: insights into prevalence, antimicrobial resistance, toxin genes profiles, and toxinotypes. Biology 2022;11:551. https://doi.org/10.3390/biology11040551
- Zafar Khan MU, Khalid S, Humza M, et al. Infection dynamics of clostridium perfringens fingerprinting in buffalo and cattle of punjab province, pakistan. Front Vet Sci 2022;9:762449. https://doi.org/10.3389/fvets.2022.762449
- Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 2018;7:1-15. https://doi.org/10.1038/s41426-018-0144-8
- Bhattacharya A, Shantikumar S, Beaufoy D, et al. Outbreak of Clostridium perfringens food poisoning linked to leeks in cheese sauce: an unusual source. Epidemiol Infect 2020;148:e43. https://doi.org/10.1017/S095026882000031X
- Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and stress resistances of Clostridium difficile spores and vegetative cells. Front Microbiol 2016;7:1698. https://doi.org/10.3389/fmicb.2016.01698
- Shrestha A, Uzal FA, McClane BA. Enterotoxic clostridia: Clostridium perfringens enteric diseases. Microbiol Spectr 2018;6:17. https://doi.org/10.1128/microbiolspec.GPP3-0003-2017
- Hassani S, Pakbin B, Bruck WM, Mahmoudi R, Mousavi S. Prevalence, antibiotic resistance, toxin-typing and genotyping of Clostridium perfringens in raw beef meats obtained from qazvin city, Iran. Antibiotics 2022;11:340. https://doi.org/10.3390/antibiotics11030340
- El Kadri H, Alaizoki A, Celen T, Smith M, Onyeaka H. The effect of low-temperature long-time (LTLT) cooking on survival of potentially pathogenic Clostridium perfringens in beef. Int J Food Microbiol 2020;320:108540. https://doi.org/10.1016/j.ijfoodmicro.2020.108540
- Rana EA, Nizami TA, Islam MS, Barua H, Islam MZ. Phenotypical identification and toxinotyping of Clostridium perfringens isolates from healthy and enteric disease-affected chickens. Vet Med Int 2023;2023:2584171. https://doi.org/10.1155/2023/2584171
- Mohiuddin M, Song Z, Liao S, et al. Animal model studies, antibiotic resistance and toxin gene profile of NE reproducing Clostridium perfringens Type A and Type G strains isolated from commercial poultry farms in China. Microorganisms 2023;11:622. https://doi.org/10.3390/microorganisms11030622
- Hamza D, Dorgham S, Hakim A. Toxinotyping and antimicrobial resistance of Clostridium perfringens isolated from processed chicken meat products. J Vet Res 2017;61:53-8. https://doi.org/10.1515/jvetres-2017-0007
- Kuo J, Uzunovic J, Jacobson A, et al. Toxigenic Clostridium perfringens isolated from at-risk pediatric inflammatory bowel disease patients. J Crohns Colitis 2024;20:jjae016. https://doi.org/10.1093/ecco-jcc/jjae016
- Talukdar PK, Alnoman M, Sarker MR. Identification of germinants and expression of germination genes in Clostridium perfringens strains isolated from diarrheic animals. Pathogens 2024;13:194. https://doi.org/10.3390/pathogens13030194
- Fayez M, El-Ghareeb WR, Elmoslemany A, et al. Genotyping and antimicrobial susceptibility of Clostridium perfringens and Clostridioides difficile in camel minced meat. Pathogens 2021;10:1640. https://doi.org/10.3390/pathogens10121640
- Yang T, Du M, Zhang J, et al. Effects of Clostridium butyricum as an antibiotic alternative on growth performance, intestinal morphology, serum biochemical response, and immunity of broilers. Antibiotics 2023;12:433. https://doi.org/10.3390/antibiotics12030433
- Haider Z, Ali T, Ullah A, et al. Isolation, toxinotyping and antimicrobial susceptibility testing of Clostridium perfringens isolated from Pakistan poultry. Anaerobe 2022;73:102499. https://doi.org/10.1016/j.anaerobe.2021.102499
- Mohamed HMA, Elfeky MMH, Abd Al-Azeem MW, Wasel FA. Molecular characterization of Clostridium perfringens in small ruminants. SVU Int J Vet Sci 2023;6:104-23. https://doi.org/10.21608/svu.2023.201258.1263
- Hassan KA, Elbourne LD, Tetu SG, et al. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol 2015;166:255-63. https://doi.org/10.1016/j.resmic.2014.10.003
- Schneider D, O'Leary M, Amini E, et al. Peyronie's disease response to intralesional collagenase clostridium histolyticum therapy is independent of baseline testosterone. Andrology 2023;12:830-4. https://doi.org/10.1111/andr.13532
- Feng X, Li T, Zhu H, et al. Effects of challenge with Clostridium perfringens, Eimeria and both on ileal microbiota of yellow feather broilers. Front Microbiol 2022;13:1063578. https://doi.org/10.3389/fmicb.2022.1063578
- Praveen Kumar N, Vinod Kumar N, Karthik A. Molecular detection and characterization of Clostridium perfringens toxin genes causing necrotic enteritis in broiler chickens. Trop Anim Health Prod 2019;51:1559-69. https://doi.org/10.1007/s11250-019-01847-9
- Anju K, Karthik K, Divya V, et al. Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe 2021;67:102298. https://doi.org/10.1016/j.anaerobe.2020.102298
- Mohiuddin M, Iqbal Z, Siddique A, et al. Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens Type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in Punjab, Pakistan. Toxins 2020;12:657. https://doi.org/10.3390/toxins12100657
- Yadav JP, Kaur S, Dhaka P, Vijay D, Bedi JS. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: a scoping review. Anaerobe 2022;77:102639. https://doi.org/10.1016/j.anaerobe.2022.102639