DOI QR코드

DOI QR Code

Alpha toxin production potential and antibiotic resistance patterns of clostridium perfringens isolates from meat samples

  • Tehreem Ali (Department of Microbiology, University of Central Punjab) ;
  • Arslan Sarwar (Department of Microbiology, University of Central Punjab) ;
  • Aftab Ahmad Anjum (Institute of Microbiology, University of Veterinary and Animal Sciences)
  • Received : 2024.04.04
  • Accepted : 2024.06.03
  • Published : 2024.11.01

Abstract

Objective: This research aimed to analyze the prevalence, molecular characteristics, toxinotyping, alpha toxin production potential, and antibiotic resistance pattern of Clostridium perfringens (C. perfringens) isolates in meat samples collected from various sources. Methods: Sixty meat samples were screened for alpha toxin using enzyme-linked immunosorbent assay, revealing a positivity rate of 13.3%, predominantly in raw poultry meat. Subsequent culturing on Perfringens agar identified nine samples harboring characteristic C. perfringens colonies, primarily isolated from raw poultry meat. Molecular confirmation through 16S rRNA gene amplification and sequencing authenticated twelve isolates as C. perfringens, with nine strains exhibiting genetic resemblance to locally isolated strains. Toxinotyping assays targeting alpha toxin-specific genes confirmed all nine isolates as type A C. perfringens, with no detection of beta or epsilon toxin genes. Hemolytic assays demonstrated varying alpha toxin production potentials among isolates, with accession number OQ721004.1 displaying the highest production capacity. Moreover, antibiotic resistance profiling revealed multi-drug resistance patterns among the isolates. Results: The study identified distinct clusters within C. perfringens strains, indicating variations. Phylogenetic analysis delineated genetic relatedness among strains, elucidating potential evolutionary paths and divergences. Conclusion: The findings underscore the need for robust surveillance and control measures to mitigate the risk of C. perfringens contamination in meat products, particularly in raw poultry meat. Enhanced monitoring and prudent antimicrobial stewardship practices are warranted in both veterinary and clinical settings to address the observed antibiotic resistance profiles and prevent foodborne outbreaks.

Keywords

References

  1. Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins 2016;8:73. https://doi.org/10.3390/toxins8030073
  2. Bendary MM, Abd El-Hamid MI, El-Tarabili RM, et al. Clostridium perfringens associated with foodborne infections of animal origins: insights into prevalence, antimicrobial resistance, toxin genes profiles, and toxinotypes. Biology 2022;11:551. https://doi.org/10.3390/biology11040551
  3. Zafar Khan MU, Khalid S, Humza M, et al. Infection dynamics of clostridium perfringens fingerprinting in buffalo and cattle of punjab province, pakistan. Front Vet Sci 2022;9:762449. https://doi.org/10.3389/fvets.2022.762449
  4. Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 2018;7:1-15. https://doi.org/10.1038/s41426-018-0144-8
  5. Bhattacharya A, Shantikumar S, Beaufoy D, et al. Outbreak of Clostridium perfringens food poisoning linked to leeks in cheese sauce: an unusual source. Epidemiol Infect 2020;148:e43. https://doi.org/10.1017/S095026882000031X
  6. Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and stress resistances of Clostridium difficile spores and vegetative cells. Front Microbiol 2016;7:1698. https://doi.org/10.3389/fmicb.2016.01698
  7. Shrestha A, Uzal FA, McClane BA. Enterotoxic clostridia: Clostridium perfringens enteric diseases. Microbiol Spectr 2018;6:17. https://doi.org/10.1128/microbiolspec.GPP3-0003-2017
  8. Hassani S, Pakbin B, Bruck WM, Mahmoudi R, Mousavi S. Prevalence, antibiotic resistance, toxin-typing and genotyping of Clostridium perfringens in raw beef meats obtained from qazvin city, Iran. Antibiotics 2022;11:340. https://doi.org/10.3390/antibiotics11030340
  9. El Kadri H, Alaizoki A, Celen T, Smith M, Onyeaka H. The effect of low-temperature long-time (LTLT) cooking on survival of potentially pathogenic Clostridium perfringens in beef. Int J Food Microbiol 2020;320:108540. https://doi.org/10.1016/j.ijfoodmicro.2020.108540
  10. Rana EA, Nizami TA, Islam MS, Barua H, Islam MZ. Phenotypical identification and toxinotyping of Clostridium perfringens isolates from healthy and enteric disease-affected chickens. Vet Med Int 2023;2023:2584171. https://doi.org/10.1155/2023/2584171
  11. Mohiuddin M, Song Z, Liao S, et al. Animal model studies, antibiotic resistance and toxin gene profile of NE reproducing Clostridium perfringens Type A and Type G strains isolated from commercial poultry farms in China. Microorganisms 2023;11:622. https://doi.org/10.3390/microorganisms11030622
  12. Hamza D, Dorgham S, Hakim A. Toxinotyping and antimicrobial resistance of Clostridium perfringens isolated from processed chicken meat products. J Vet Res 2017;61:53-8. https://doi.org/10.1515/jvetres-2017-0007
  13. Kuo J, Uzunovic J, Jacobson A, et al. Toxigenic Clostridium perfringens isolated from at-risk pediatric inflammatory bowel disease patients. J Crohns Colitis 2024;20:jjae016. https://doi.org/10.1093/ecco-jcc/jjae016
  14. Talukdar PK, Alnoman M, Sarker MR. Identification of germinants and expression of germination genes in Clostridium perfringens strains isolated from diarrheic animals. Pathogens 2024;13:194. https://doi.org/10.3390/pathogens13030194
  15. Fayez M, El-Ghareeb WR, Elmoslemany A, et al. Genotyping and antimicrobial susceptibility of Clostridium perfringens and Clostridioides difficile in camel minced meat. Pathogens 2021;10:1640. https://doi.org/10.3390/pathogens10121640
  16. Yang T, Du M, Zhang J, et al. Effects of Clostridium butyricum as an antibiotic alternative on growth performance, intestinal morphology, serum biochemical response, and immunity of broilers. Antibiotics 2023;12:433. https://doi.org/10.3390/antibiotics12030433
  17. Haider Z, Ali T, Ullah A, et al. Isolation, toxinotyping and antimicrobial susceptibility testing of Clostridium perfringens isolated from Pakistan poultry. Anaerobe 2022;73:102499. https://doi.org/10.1016/j.anaerobe.2021.102499
  18. Mohamed HMA, Elfeky MMH, Abd Al-Azeem MW, Wasel FA. Molecular characterization of Clostridium perfringens in small ruminants. SVU Int J Vet Sci 2023;6:104-23. https://doi.org/10.21608/svu.2023.201258.1263
  19. Hassan KA, Elbourne LD, Tetu SG, et al. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol 2015;166:255-63. https://doi.org/10.1016/j.resmic.2014.10.003
  20. Schneider D, O'Leary M, Amini E, et al. Peyronie's disease response to intralesional collagenase clostridium histolyticum therapy is independent of baseline testosterone. Andrology 2023;12:830-4. https://doi.org/10.1111/andr.13532
  21. Feng X, Li T, Zhu H, et al. Effects of challenge with Clostridium perfringens, Eimeria and both on ileal microbiota of yellow feather broilers. Front Microbiol 2022;13:1063578. https://doi.org/10.3389/fmicb.2022.1063578
  22. Praveen Kumar N, Vinod Kumar N, Karthik A. Molecular detection and characterization of Clostridium perfringens toxin genes causing necrotic enteritis in broiler chickens. Trop Anim Health Prod 2019;51:1559-69. https://doi.org/10.1007/s11250-019-01847-9
  23. Anju K, Karthik K, Divya V, et al. Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe 2021;67:102298. https://doi.org/10.1016/j.anaerobe.2020.102298
  24. Mohiuddin M, Iqbal Z, Siddique A, et al. Prevalence, genotypic and phenotypic characterization and antibiotic resistance profile of Clostridium perfringens Type A and D isolated from feces of sheep (Ovis aries) and goats (Capra hircus) in Punjab, Pakistan. Toxins 2020;12:657. https://doi.org/10.3390/toxins12100657
  25. Yadav JP, Kaur S, Dhaka P, Vijay D, Bedi JS. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: a scoping review. Anaerobe 2022;77:102639. https://doi.org/10.1016/j.anaerobe.2022.102639