Acknowledgement
We thank Science and Technology Project of Guizhou Province ([2020]1Y138); Guizhou High-level innovative Talents Training Project (Thousand level innovative talents) (2022-(2020)-044); Doctoral Talents project of Science and Technology Bureau of Tongren, Guizhou Province ([2022]1) and Key laboratory project of Guizhou Province ([2020]2003); Scientific Research project of Education Department of Jilin Province (JJKH20220399KJ) to support this work.
References
- Bhat B, Singh A, Iqbal Z, et al. Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat. Sci Rep 2019;9:6361. https://doi.org/10.1038/s41598-019-42676-y
- Kuzumaki T, Matsuda A, Wakamatsu K, Ito S, Ishikawa K. Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp Cell Res 1993;20:33-40. https://doi.org/10.1006/excr.1993.1159
- Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. Mitf in normal melanocytes, cutaneous and uveal melanoma: a delicate balance. Int J Mol Sci 2022;23:6001. https://doi.org/10.3390/ijms23116001
- Archambault M, Yaar M, Gilchrest BA. Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J Invest Dermatol 1995;104:859-867. https://doi.org/10.1111/1523-1747.ep12607034
- Wang Y, Viennet C, Robin S, Berthon JY, He L, Humbert P. Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci 2017;88:159-66. https://doi.org/10.1016/j.jdermsci.2017.06.018
- Fu C, Chen J, Lu J, et al. Roles of inflammation factors in melanogenesis. Mol Med Rep 2020;21:1421-30. https://doi.org/10.3892/mmr.2020.10950
- Zhou S, Zeng H, Huang J, et al. Epigenetic regulation of melanogenesis. Ageing Res Rev 2021;69:101349. https://doi.org/10.1016/j.arr.2021.101349
- Kopp F, Mendell JTJC. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018;172:393-407. https://doi.org/10.1016/j.cell.2018.01.011
- Ji K, Fan R, Zhang J, Yang S, Dong C. Long non-coding RNA expression profile in Cdk5-knockdown mouse skin. Gene 2018;672:195-201. https://doi.org/10.1016/j.gene.2018.05.120
- Ji K, Zhang J, Fan R, Yang S, Dong C. ifferential expression of lncRNAs and predicted target genes in normal mouse melanocytes and B16 cells. Exp Dermatol 2018;27:1230-6. https://doi.org/10.1111/exd.13768
- Ji KY, Zhao YW, Wen RJ, Ibrar MK, Zhang YH. A genomewide integrated analysis of lncRNA-mRNA in melanocytes from white and brown skin hair boer goats (Capra aegagrus hircus). Front Vet Sci 2022;9:1009174. https://doi.org/10.3389/fvets.2022.1009174
- Zhao B, Luo H, He J, et al. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep. BMC Biol 2021;19:197. https://doi.org/10.1186/s12915-021-01127-9
- Jin L, Zhao L, Hu S, et al. Transcriptional differences of coding and non-coding genes related to the absence of melanocyte in skins of bama pig. Genes (Basel) 2019;11:47. https://doi.org/10.3390/genes11010047
- Pei S, Huang J, Chen J, et al. UVB-inhibited H19 activates melanogenesis by paracrine effects. Exp Dermatol 2018;27:1120-5. https://doi.org/10.1111/exd.13749
- Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol 2014;134:1075-82. https://doi.org/10.1038/jid.2013.478
- Zhao W, Mazar J, Lee B, et al. The long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes. J Invest Dermatol 2016;136:819-28. https://doi.org/10.1016/j.jid.2016.01.018
- Jiang L, Huang J, Hu Y, et al. Identification of the ceRNA networks in α-MSH-induced melanogenesis of melanocytes. Aging (Albany NY) 2021;13:2700-26. https://doi.org/10.18632/aging.202320
- Pei S, Chen J, Lu J, et al. The long noncoding RNA UCA1 negatively regulates melanogenesis in melanocytes. J Invest Dermatol 2020;140:152-63. https://doi.org/10.1016/j.jid.2019.04.029
- Fu C, Chen J, Lu J, et al. Downregulation of TUG1 promotes melanogenesis and UVB-induced melanogenesis. Exp Dermatol 2019;28:730-3. https://doi.org/10.1111/exd.13929
- Ho JC, Lee CH, Hong CH. Targeting steroid receptor RNA activator (SRA), a long non-coding RNA, enhances melanogenesis through activation of TRP1 and inhibition of p38 phosphorylation. PLoS One 2020;15:e0237577. https://doi.org/10.1371/journal.pone.0237577
- Zeng Q, Wang Q, Chen X, et al. Analysis of lncRNAs expression in UVB-induced stress responses of melanocytes. J Dermatol Sci 2016;81:53-60. https://doi.org/10.1016/j.jdermsci.2015.10.019
- Deng X, Chen K, Luo GZ, et al. Widespread occurrence of N 6-methyladenosine in bacterial mRNA. Nucleic Acids Res 2015;43:6557-67. https://doi.org/10.1093/nar/gkv596
- Lence T, Soller M, Roignant JY. A fly view on the roles and mechanisms of the m6A mRNA modification and its players. RNA Biol 2017;14:1232-40. https://doi.org/10.1080/15476286.2017.1307484
- Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017;18:31-42. https://doi.org/10.1038/nrm.2016.132
- Yue H, Nie X, Yan Z, Weining S. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol J 2019;17:1194-208. https://doi.org/10.1111/pbi.13149
- Oerum S, Meynier V, Catala M, Tisne C. A comprehensive review of m6A/m6A mRNA methyltransferase structures. Nucleic Acids Res 2021;49:7239-55. https://doi.org/10.1093/nar/gkab378
- Zhang J, Yang Q, Yang J, et al. Comprehensive analysis of transcriptome-wide m(6)A methylome upon clostridium perfringens beta2 toxin exposure in porcine intestinal epithelial cells by m(6)A sequencing. Front Genet 2021;12:689748. https://doi.org/10.3389/fgene.2021.689748
- Lu Z, Liu J, Yuan C, et al. m(6)A mRNA methylation analysis provides novel insights into heat stress responses in the liver tissue of sheep. Genomics 2021;113:484-92. https://doi.org/10.1016/j.ygeno.2020.09.038
- Dahal U, Le K, Gupta M. RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res 2019;29:382-9. https://doi.org/10.1097/CMR.0000000000000580
- Wang ZY, Li P, Hu JP, Xu Q, Zhang CY. Construction of a single-molecule biosensor for antibody-free detection of locus-specific N 6-methyladenosine in cancer cells and tissues. Anal Chem 2023;95:5454-62. https://doi.org/10.1021/acs.analchem.3c00730
- Zhao Y, Meng J, Song X, An Q. m6A mRNA methylation analysis provides novel insights into pigmentation in sheep skin. Epigenetics 2023;18:2230662. https://doi.org/10.1080/15592294.2023.2230662
- Wang S, Tan B, Xiao L, et al. Comprehensive analysis of long noncoding RNA modified by m6A methylation in oxidative and glycolytic skeletal muscles. Int J Mol Sci 2022;23:4600. https://doi.org/10.3390/ijms23094600
- Huang C, Dai R, Meng G, et al. Transcriptome-wide study of mRNAs and lncRNAs modified by m6A RNA methylation in the longissimus dorsi muscle development of cattle-yak. Cells 2022;11:3654. https://doi.org/10.3390/cells11223654
- Yang J, Yang Q, Zhang J, et al. N6-methyladenosine methylation analysis of long noncoding RNAs and mRNAs in IPEC-J2 cells treated with clostridium perfringens beta2 toxin. Front Immunol 2021;12:769204. https://doi.org/10.3389/fimmu.2021.769204
- He S, Wang H, Liu R, et al. mRNA N6-methyladenosine methylation of postnatal liver development in pig. PLoS One 2017;12:e0173421. https://doi.org/10.1371/journal.pone.0173421
- Qin Z, Wang W, Ali MA, et al. Transcriptome-wide m(6)A profiling reveals mRNA post-transcriptional modification of boar sperm during cryopreservation. BMC Genomics 2021;22:588. https://doi.org/10.1186/s12864-021-07904-8
- Melzer ME, Sweedler JV, Clark KD. Rapid determination of RNA modifications in consensus motifs by nuclease protection with ion-tagged oligonucleotide probes and matrixassisted laser desorption ionization mass spectrometry. Genes (Basel) 2022;13:1008. https://doi.org/10.3390/genes13061008
- Zuo X, Chen Z, Gao W, et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 2020;13:5. https://doi.org/10.1186/s13045-019-0839-x
- Yang J, Yang Q, Huang X, et al. METTL3-mediated LncRNA EN_42575 m6A modification alleviates CPB2 toxin-induced damage in IPEC-J2 cells. Int J Mol Sci 2023;24:5725. https://doi.org/10.3390/ijms24065725
- Zhu T, Roundtree IA, Wang P, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res 2014;24:1493-6. https://doi.org/10.1038/cr.2014.152
- Zhu S, Wang JZ, Chen D, et al. An oncopeptide regulates m(6)A recognition by the m(6)A reader IGF2BP1 and tumorigenesis. Nat Commun 2020;11:1685. https://doi.org/10.1038/s41467-020-15403-9
- Hong L, Hu Q, Zang X, et al. Analysis and screening of reproductive long non-coding RNAs through genome-wide analyses of goat endometrium during the pre-attachment phase. Front Genet 2020;11:568017. https://doi.org/10.3389/fgene.2020.568017
- Nornes S, Newman M, Wells S, Verdile G, Martins RN, Lardelli M. Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos. Exp Cell Res 2009;315:2791-801. https://doi.org/10.1016/j.yexcr.2009.06.023
- Jiang H, Newman M, Lardelli M. The zebrafish orthologue of familial Alzheimer's disease gene PRESENILIN 2 is required for normal adult melanotic skin pigmentation. PLoS One 2018;13:e0206155. https://doi.org/10.1371/journal.pone.0206155
- Spofford LS, Abel EV, Boisvert-Adamo K, Aplin AE. Cyclin D3 expression in melanoma cells is regulated by adhesion-dependent phosphatidylinositol 3-kinase signaling and contributes to G1-S progression. J Biol Chem 2006;281:25644-51. https://doi.org/10.1074/jbc.M600197200
- Li MY, Flora P, Pu H, et al. UV-induced reduction in Polycomb repression promotes epidermal pigmentation. Dev Cell 2021;56:2547-61. https://doi.org/10.1016/j.devcel.2021.08.006
- Yu M, Bell RH, Ho MM, et al. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth. PLoS One 2012;7:e34185. https://doi.org/10.1371/journal.pone.0034185