DOI QR코드

DOI QR Code

Function of immune cells and effector molecules of the innate immune system in the establishment and maintenance of pregnancy in mammals - A review

  • Soohyung Lee (Division of Biological Science and Technology, Yonsei University) ;
  • Inkyu Yoo (Division of Biological Science and Technology, Yonsei University) ;
  • Yugyeong Cheon (Division of Biological Science and Technology, Yonsei University) ;
  • Eunhyeok Choi (Division of Biological Science and Technology, Yonsei University) ;
  • Seonghyun Kim (Division of Biological Science and Technology, Yonsei University) ;
  • Hakhyun Ka (Division of Biological Science and Technology, Yonsei University)
  • 투고 : 2024.04.20
  • 심사 : 2024.06.20
  • 발행 : 2024.11.01

초록

In mammalian species, pregnancy is a complex process that involves the maternal recognition of pregnancy, implantation, decidualization, placentation, and parturition. The innate immune system is composed of cellular components, such as natural killer cells, neutrophils, monocytes, and macrophages, and effector molecules, such as cytokines, interferons, antimicrobial peptides, and complement components. The innate immune system plays a critical role as the first line of defense against infection or inflammation to maintain homeostasis and activate the adaptive immunity. During pregnancy, innate immune cells and effector molecules act on the regulation of innate immunity for host defense and processes such as embryo development, implantation, and placentation at the maternal-conceptus interface. In this review, we describe the components of the innate immune system and their functions at the maternal-conceptus interface to establish and maintain pregnancy in animal species that form hemochorial- or epitheliochorial-type placentas, including humans, rodents, ruminants, and pigs.

키워드

과제정보

The authors would like to thank all the members of the Animal Biotechnology Laboratory, Yonsei University, for their support and assistance throughout this project.

참고문헌

  1. Riera Romo M, Perez-Martinez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology 2016;148:125-39. https://doi.org/10.1111/imm.12597 
  2. Delves PJ, Roitt IM. The immune system. N Engl J Med 2000;343:37-49. https://doi.org/10.1056/NEJM200007063430107 
  3. Trowsdale J, Betz AG. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol 2006;7:241-6. https://doi.org/10.1038/ni1317 
  4. Li X, Zhou J, Fang M, Yu B. Pregnancy immune tolerance at the maternal-fetal interface. Int Rev Immunol 2020;39:247-63. https://doi.org/10.1080/08830185.2020.1777292 
  5. Gimeno-Molina B, Muller I, Kropf P, Sykes L. The role of neutrophils in pregnancy, term and preterm labour. Life 2022;12:1512. https://doi.org/10.3390/life12101512 
  6. Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev 2019;99:1223-48. https://doi.org/10.1152/physrev.00012.2018 
  7. Kumar V, Sharma A. Neutrophils: cinderella of innate immune system. Int Immunopharmacol 2010;10:1325-34. https://doi.org/10.1016/j.intimp.2010.08.012 
  8. Gasteiger G, D'Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun 2017;9:111-25. https://doi.org/10.1159/000453397 
  9. Blazkova J, Gupta S, Liu Y, et al. Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy. J Immunol 2017;198:2479-88. https://doi.org/10.4049/jimmunol.1601855 
  10. Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol 2020;11:575197. https://doi.org/10.3389/fimmu.2020.575197 
  11. Fiorenza MF, Amaral CDS, da Anunciacao ARA, et al. Possible impact of neutrophils on immune responses during early pregnancy in ruminants. Anim Reprod 2021;18:e20210048. https://doi.org/10.1590/1984-3143-AR2021-0048 
  12. Mohammed S, Alhussien MN, Dang AK. Pregnancy stage-dependent modulation of neutrophil function may impact embryo survivability and pregnancy outcome in crossbred cows. Theriogenology 2022;191:200-6. https://doi.org/10.1016/j.theriogenology.2022.08.020 
  13. Kaeoket K, Persson E, Dalin AM. Influence of pre-ovulatory insemination and early pregnancy on the infiltration by cells of the immune system in the sow endometrium. Anim Reprod Sci 2003;75:55-71. https://doi.org/10.1016/s0378-4320(02)00230-0 
  14. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008;9:503-10. https://doi.org/10.1038/ni1582 
  15. Chester C, Fritsch K, Kohrt HE. Natural killer cell immunomodulation: targeting activating, inhibitory, and costimulatory receptor signaling for cancer immunotherapy. Front Immunol 2015;6:601. https://doi.org/10.3389/fimmu.2015.00601 
  16. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 2017;8:1124. https://doi.org/10.3389/fimmu.2017.01124 
  17. Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol 2021;12:728291. https://doi.org/10.3389/fimmu.2021.728291 
  18. Vasudevan S, Kamat MM, Walusimbi SS, Pate JL, Ott TL. Effects of early pregnancy on uterine lymphocytes and endometrial expression of immune-regulatory molecules in dairy heifers. Biol Reprod 2017;97:104-18. https://doi.org/10.1093/biolre/iox061 
  19. Jia GX, Ma WJ, Wu ZB, et al. Single-cell transcriptomic characterization of sheep conceptus elongation and implantation. Cell Rep 2023;42:112860. https://doi.org/10.1016/j.celrep.2023.112860 
  20. Tekin S, Hansen PJ. Natural killer-like cells in the sheep: functional characterization and regulation by pregnancy-associated proteins. Exp Biol Med 2002;227:803-11. https://doi.org/10.1177/153537020222700913 
  21. Engelhardt H, Croy BA, King GJ. Evaluation of natural killer cell recruitment to embryonic attachment sites during early porcine pregnancy. Biol Reprod 2002;66:1185-92. https://doi.org/10.1095/biolreprod66.4.1185 
  22. Yu Z, Croy BA, Chapeau C, King GJ. Elevated endometrial natural killer cell activity during early porcine pregnancy is conceptus-mediated. J Reprod Immunol 1993;24:153-64. https://doi.org/10.1016/0165-0378(93)90017-c 
  23. Han J, Gu MJ, Yoo I, et al. Analysis of cysteine-X-cysteine motif chemokine ligands 9, 10, and 11, their receptor CXCR3, and their possible role on the recruitment of immune cells at the maternal-conceptus interface in pigs. Biol Reprod 2017;97:69-80. https://doi.org/10.1093/biolre/iox074 
  24. Faas MM, Spaans F, De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front Immunol 2014;5:298. https://doi.org/10.3389/fimmu.2014.00298 
  25. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020;877:173090. https://doi.org/10.1016/j.ejphar.2020.173090 
  26. Jablonski KA, Amici SA, Webb LM, et al. Novel markers to delineate murine m1 and m2 macrophages. PLoS ONE 2015;10:e0145342. https://doi.org/10.1371/journal.pone.0145342 
  27. Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than m1 and m2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol 2015;6:263. https://doi.org/10.3389/fimmu.2015.00263 
  28. Jiang X, Wang H. Macrophage subsets at the maternal-fetal interface. Cell Mol Immunol 2020;17:889-91. https://doi.org/10.1038/s41423-020-0435-6 
  29. Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol 2009;82:24-31. https://doi.org/10.1016/j.jri.2009.08.001 
  30. Jiang X, Wang H. Macrophage subsets at the maternal-fetal interface. Cell Mol Immunol 2020;17:889-91. https://doi.org/10.1038/s41423-020-0435-6 
  31. Mansouri-Attia N, Oliveira LJ, Forde N, et al. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol Reprod 2012;87:123. https://doi.org/10.1095/biolreprod.112.101121 
  32. Oliveira LJ, McClellan S, Hansen PJ. Differentiation of the endometrial macrophage during pregnancy in the cow. PLoS ONE 2010;5:e13213. https://doi.org/10.1371/journal.pone.0013213 
  33. Jiwakanon J, Persson E, Dalin AM. The endometrium of the anoestrous female pig: studies on infiltration by cells of the immune system. Reprod Domest Anim 2006;41:191-5. https://doi.org/10.1111/j.1439-0531.2006.00681.x 
  34. Han J, Yoo I, Lee S, Cheon Y, Yun CH, Ka H. Interleukin-10 and its receptors at the maternal-conceptus interface: expression, regulation, and implication for T helper 2 cytokine predominance and maternal immune tolerance in the pig, a true epitheliochorial placentation speciesdagger. Biol Reprod 2022;106:1159-74. https://doi.org/10.1093/biolre/ioac058 
  35. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005;11:613-30. https://doi.org/10.1093/humupd/dmi023 
  36. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009;27:519-50. https://doi.org/10.1146/annurev.immunol.021908.132612 
  37. Auron PE, Webb AC, Rosenwasser LJ, et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 1984;81:7907-11. https://doi.org/10.1073/pnas.81.24.7907 
  38. Boraschi D, Tagliabue A. The interleukin-1 receptor family. Semin Immunol 2013;25:394-407. https://doi.org/10.1016/j.smim.2013.10.023 
  39. Simon C, Piquette GN, Frances A, Polan ML. Localization of interleukin-1 type I receptor and interleukin-1 beta in human endometrium throughout the menstrual cycle. J Clin Endocrinol Metab 1993;77:549-55. https://doi.org/10.1210/jcem.77.2.8345061 
  40. De M, Sanford TR, Wood GW. Expression of interleukin 1, interleukin 6 and tumour necrosis factor alpha in mouse uterus during the peri-implantation period of pregnancy. J Reprod Fertil 1993;97:83-9. https://doi.org/10.1530/jrf.0.0970083 
  41. Correia-Alvarez E, Gomez E, Martin D, et al. Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. J Reprod Immunol 2015;110:1-13. https://doi.org/10.1016/j.jri.2015.03.006 
  42. Geisert RD, Lucy MC, Whyte JJ, Ross JW, Mathew DJ. Cytokines from the pig conceptus: roles in conceptus development in pigs. J Anim Sci Biotechnol 2014;5:51. https://doi.org/10.1186/2049-1891-5-51 
  43. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6:a016295. https://doi.org/10.1101/cshperspect.a016295 
  44. Hirano T, Akira S, Taga T, Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol Today 1990;11:443-9. https://doi.org/10.1016/0167-5699(90)90173-7 
  45. Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and gestational disorders. J Reprod Immunol 2012;95:1-14. https://doi.org/10.1016/j.jri.2012.05.004 
  46. Tabibzadeh S, Kong QF, Babaknia A, May LT. Progressive rise in the expression of interleukin-6 in human endometrium during menstrual cycle is initiated during the implantation window. Hum Reprod 1995;10:2793-9. https://doi.org/10.1093/oxfordjournals.humrep.a135793 
  47. De M, Sanford TH, Wood GW. Detection of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in the uterus during the second half of pregnancy in the mouse. Endocrinology 1992;131:14-20. https://doi.org/10.1210/endo.131.1.1611993 
  48. Zhu Z, Li B, Wu Y, Wang X, Deng G. Interferon-tau increases BoLA-I for implantation during early pregnancy in dairy cows. Oncotarget 2017;8:95095-107. https://doi.org/10.18632/oncotarget.19282 
  49. Rahman AN, Snibson KJ, Lee CS, Meeusen EN. Effects of implantation and early pregnancy on the expression of cytokines and vascular surface molecules in the sheep endometrium. J Reprod Immunol 2004;64:45-58. https://doi.org/10.1016/j.jri.2004.08.008 
  50. Yoo I, Han J, Kim M, et al. Expression and regulation of interleukin 6 and its receptor at the maternal-conceptus interface during pregnancy in pigs. Theriogenology 2017;96:85-91. https://doi.org/10.1016/j.theriogenology.2017.04.007 
  51. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765. https://doi.org/10.1146/annurev.immunol.19.1.683 
  52. Hanna N, Hanna I, Hleb M, et al. Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J Immunol 2000;164:5721-8. https://doi.org/10.4049/jimmunol.164.11.5721 
  53. Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 1993;151:4562-73. 
  54. Thaxton JE, Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am J Reprod Immunol 2010;63:482-91. https://doi.org/10.1111/j.1600-0897.2010.00810.x 
  55. Viganò P, Somigliana E, Mangioni S, Vignali M, Vignali M, Blasio AMD. Expression of interleukin-10 and its receptor is up-regulated in early pregnant versus cycling human endometrium. J Clin Endocrinol Metab 2002;87:5730-6. https://doi.org/10.1210/jc.2002-020435 
  56. Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 2006;17:259-80. https://doi.org/10.1016/j.cytogfr.2006.05.001 
  57. Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005;86:209-39. https://doi.org/10.1016/S0065-2776(04)86006-1 
  58. Bulfone-Paus S, Durkop H, Paus R, Krause H, Pohl T, Onu A. Differential regulation of human T lymphoblast functions by IL-2 and IL-15. Cytokine 1997;9:507-13. https://doi.org/10.1006/cyto.1996.0194 
  59. Kitaya K, Yasuda J, Yagi I, Tada Y, Fushiki S, Honjo H. IL-15 expression at human endometrium and decidua. Biol Reprod 2000;63:683-7. https://doi.org/10.1095/biolreprod63.3.683 
  60. Ashkar AA, Black GP, Wei Q, et al. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J Immunol 2003;171:2937-44. https://doi.org/10.4049/jimmunol.171.6.2937 
  61. Yu JJ, Sun HT, Zhang ZF, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction 2016;152:151-60. https://doi.org/10.1530/REP-16-0089 
  62. Mansouri-Attia N, Oliveira LJ, Forde N, et al. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol Reprod 2012;87:123. https://doi.org/10.1095/biolreprod.112.101121 
  63. Gordon SM. Interleukin-15 in outcomes of pregnancy. Int J Mol Sci 2021;22:11094. https://doi.org/10.3390/ijms222011094 
  64. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8-32. https://doi.org/10.1111/j.0105-2896.2004.00204.x 
  65. Yang CH, Murti A, Pfeffer SR, Kim JG, Donner DB, Pfeffer LM. Interferon alpha /beta promotes cell survival by activating nuclear factor kappa B through phosphatidylinositol 3-kinase and Akt. J Biol Chem 2001;276:13756-61. https://doi.org/10.1074/jbc.M011006200 
  66. Kalliolias GD, Ivashkiv LB. Overview of the biology of type I interferons. Arthritis Res Ther 2010;12 (Suppl 1):S1. https://doi.org/10.1186/ar2881 
  67. Spencer TE, Ott TL, Bazer FW. tau-Interferon: pregnancy recognition signal in ruminants. Proc Soc Exp Biol Med 1996;213:215-29. https://doi.org/10.3181/00379727-213-44053 
  68. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol 1997;15:749-95. https://doi.org/10.1146/annurev.immunol.15.1.749 
  69. Su X, Yu Y, Zhong Y, et al. Interferon-gamma regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 2015;16:838-49. https://doi.org/10.1038/ni.3205 
  70. Manivasagam S, Klein RS. Type III interferons: emerging roles in autoimmunity. Front Immunol 2021;12:764062. https://doi.org/10.3389/fimmu.2021.764062 
  71. Roberts RM, Chen Y, Ezashi T, Walker AM. Interferons and the maternal-conceptus dialog in mammals. Semin Cell Dev Biol 2008;19:170-7. https://doi.org/10.1016/j.semcdb.2007.10.007 
  72. Platt JS, Hunt JS. Interferon-gamma gene expression in cycling and pregnant mouse uterus: temporal aspects and cellular localization. J Leukoc Biol 1998;64:393-400. https://doi.org/10.1002/jlb.64.3.393 
  73. Yoo I, Kim D, Han J, et al. Transcriptomic analysis of interferon-gamma-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020;155:114-24. https://doi.org/10.1016/j.theriogenology.2020.05.045 
  74. Paulesu L, Romagnoli R, Cintorino M, Ricci MG, Garotta G. First trimester human trophoblast expresses both interferon-gamma and interferon-gamma-receptor. J Reprod Immunol 1994;27:37-48. https://doi.org/10.1016/0165-0378(94)90013-2 
  75. Bourke NM, Achilles SL, Huang SU, et al. Spatiotemporal regulation of human IFN-epsilon and innate immunity in the female reproductive tract. JCI Insight 2022;7:e135407. https://doi.org/10.1172/jci.insight.135407 
  76. Li Q, Zhang M, Kumar S, et al. Identification and implantation stage-specific expression of an interferon-alpha-regulated gene in human and rat endometrium. Endocrinology 2001;142:2390-400. https://doi.org/10.1210/endo.142.6.8101 
  77. Park Y, Han SJ. Interferon signaling in the endometrium and in endometriosis. Biomolecules 2022;12:1554. https://doi.org/10.3390/biom12111554 
  78. Hansen TR, Sinedino LDP, Spencer TE. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017; 154:F45-F59. https://doi.org/10.1530/REP-17-0315 
  79. Bazer FW, Johnson GA. Pig blastocyst-uterine interactions. Differentiation 2014;87:52-65. https://doi.org/10.1016/j.diff.2013.11.005 
  80. Yoo I, Lee S, Cheon Y, Ka H. Matrix metalloproteinases: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs. Anim Biosci 2023;36:1167-79. https://doi.org/10.5713/ab.22.0478 
  81. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. https://doi.org/10.1111/febs.14466 
  82. Du MR, Wang SC, Li DJ. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 2014;11:438-48. https://doi.org/10.1038/cmi.2014.68 
  83. Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and function of chemokines at the maternal-fetal interface. Front Cell Dev Biol 2022;10:826053. https://doi.org/10.3389/fcell.2022.826053 
  84. Nagaoka K, Nojima H, Watanabe F, et al. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem 2003;278:29048-56. https://doi.org/10.1074/jbc.M300470200 
  85. Imakawa K, Imai M, Sakai A, et al. Regulation of conceptus adhesion by endometrial CXC chemokines during the implantation period in sheep. Mol Reprod Dev 2006;73:850-8. https://doi.org/10.1002/mrd.20496 
  86. Sakumoto R, Hayashi KG, Fujii S, et al. Possible roles of cc- and cxc-chemokines in regulating bovine endometrial function during early pregnancy. Int J Mol Sci 2017;18:742. https://doi.org/10.3390/ijms18040742 
  87. Choi Y, Seo H, Han J, Yoo I, Kim J, Ka H. Chemokine (c-c motif) ligand 28 and its receptor ccr10: expression and function at the maternal-conceptus interface in pigs. Biol Reprod 2016;95:84. https://doi.org/10.1095/biolreprod.116.141903 
  88. Khalil RH, Al-Humadi N. Types of acute phase reactants and their importance in vaccination. Biomed Rep 2020;12:143-52. https://doi.org/10.3892/br.2020.1276 
  89. Li Z, Hou Y, Zhao M, et al. Serum amyloid a, a potential biomarker both in serum and tissue, correlates with ovarian cancer progression. J Ovarian Res 2020;13:67. https://doi.org/10.1186/s13048-020-00669-w 
  90. Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol 2022;13:978929. https://doi.org/10.3389/fimmu.2022.978929 
  91. Watts DH, Krohn MA, Wener MH, Eschenbach DA. C-reactive protein in normal pregnancy. Obstet Gynecol 1991;77:176-80. https://doi.org/10.1097/00006250-199102000-00002 
  92. Liu Q, Ryon J, Nilsen-Hamilton M. Uterocalin: a mouse acute phase protein expressed in the uterus around birth. Mol Reprod Dev 1997;46:507-14. https://doi.org/10.1002/(SICI)1098-2795(199704)46:4<507::AID-MRD9>3.0.CO;2-S 
  93. Chapwanya A, Meade KG, Doherty ML, Callanan JJ, Mee JF, O'Farrelly C. Histopathological and molecular evaluation of Holstein-Friesian cows postpartum: toward an improved understanding of uterine innate immunity. Theriogenology 2009;71:1396-407. https://doi.org/10.1016/j.theriogenology.2009.01.006 
  94. Gregula-Kania M, Kosior-Korzecka U, Patkowski K, Juszczuk-Kubiak E, Plewik M, Gruszecki TM. Acute-phase proteins, cortisol and haematological parameters in ewes during the periparturient period. Reprod Domest Anim 2020;55:393-400. https://doi.org/10.1111/rda.13628 
  95. Lee S, Yoo I, Cheon Y, Ka H. Conceptus-derived cytokines interleukin-1beta and interferon-gamma induce the expression of acute phase protein serum amyloid A3 in endometrial epithelia at the time of conceptus implantation in pigs. Anim Biosci 2023;36:441-50. https://doi.org/10.5713/ab.22.0334 
  96. Garcia-Vazquez FA, Moros-Nicolas C, Lopez-Ubeda R, et al. Evidence of haptoglobin in the porcine female genital tract during oestrous cycle and its effect on in vitro embryo production. Sci Rep 2021;11:12041. https://doi.org/10.1038/s41598-021-90810-6 
  97. Sandri S, Urban Borbely A, Fernandes I, et al. Serum amyloid A in the placenta and its role in trophoblast invasion. PLoS ONE 2014;9:e90881. https://doi.org/10.1371/journal.pone.0090881 
  98. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 2020;11:582779. https://doi.org/10.3389/fmicb.2020.582779 
  99. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020;19:311-32. https://doi.org/10.1038/s41573-019-0058-8 
  100. Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med 2013;13:24-57. 
  101. Frew L, Stock SJ. Antimicrobial peptides and pregnancy. Reproduction 2011;141:725-35. https://doi.org/10.1530/REP-10-0537 
  102. Nair RR, Khanna A, Singh K. Role of inflammatory proteins S100A8 and S100A9 in pathophysiology of recurrent early pregnancy loss. Placenta 2013;34:824-7. https://doi.org/10.1016/j.placenta.2013.06.307 
  103. Swangchan-Uthai T, Chen Q, Kirton SE, et al. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow. Reproduction 2013;145:527-39. https://doi.org/10.1530/REP-12-0513 
  104. Lee S, Jang H, Yoo I, Han J, Jung W, Ka H. Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs. Asian-Australas J Anim Sci 2019;32:1355-62. https://doi.org/10.5713/ajas.18.0920 
  105. Jang H, Lee S, Yoo I, et al. Calcium-binding proteins S100A8, S100A9, and S100A12: expression and regulation at the maternal-conceptus interface in pigsdagger. Biol Reprod 2022;106:1098-111. https://doi.org/10.1093/biolre/ioac039 
  106. Lee S, Yoo I, Cheon Y, Hong M, Jeon BY, Ka H. Antimicrobial peptides beta-defensin family: Expression and regulation in the endometrium during the estrous cycle and pregnancy in pigs. Dev Comp Immunol 2023;139:104596. https://doi.org/10.1016/j.dci.2022.104596 
  107. Lee S, Yoo I, Cheon Y, Ka H. Spatiotemporal expression and regulation of peptidase inhibitor 3 and secretory leukocyte protease inhibitor at the maternal-fetal interface in pigs. Anim Biosci 2023;36:1034-43. https://doi.org/10.5713/ab.22.0415 
  108. Lee S, Yoo I, Han J, Ka H. Antimicrobial peptides cathelicidin, PMAP23, and PMAP37: Expression in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy and regulation by steroid hormones and calcitriol in pigs. Theriogenology 2021;160:1-9. https://doi.org/10.1016/j.theriogenology.2020.10.034 
  109. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010;11:785-97. https://doi.org/10.1038/ni.1923 
  110. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol 2015;6:257. https://doi.org/10.3389/fimmu.2015.00257 
  111. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol 2009;9:729-40. https://doi.org/10.1038/nri2620 
  112. Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential role of complement in pregnancy: from implantation to parturition and beyond. Front Immunol 2020;11:1681. https://doi.org/10.3389/fimmu.2020.01681 
  113. Agostinis C, Bulla R, Tripodo C, et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J Immunol 2010;185:4420-9. https://doi.org/10.4049/jimmunol.0903215 
  114. Bulla R, Bossi F, Agostinis C, et al. Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol 2009;82:119-25. https://doi.org/10.1016/j.jri.2009.06.124 
  115. Palomino WA, Argandona F, Azua R, Kohen P, Devoto L. Complement C3 and decay-accelerating factor expression levels are modulated by human chorionic gonadotropin in endometrial compartments during the implantation window. Reprod Sci 2013;20:1103-10. https://doi.org/10.1177/1933719113477486 
  116. Li SH, Huang HL, Chen YH. Ovarian steroid-regulated synthesis and secretion of complement C3 and factor B in mouse endometrium during the natural estrous cycle and pregnancy period. Biol Reprod 2002;66:322-32. https://doi.org/10.1095/biolreprod66.2.322 
  117. Banadakoppa M, Pennington K, Balakrishnan M, Yallampalli C. Complement inhibitor Crry expression in mouse placenta is essential for maintaining normal blood pressure and fetal growth. PLoS ONE 2020;15:e0236968. https://doi.org/10.1371/journal.pone.0236968 
  118. Nakamura K, Kusama K, Bai R, et al. Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice. PLoS ONE 2017;12:e0178442. https://doi.org/10.1371/journal.pone.0178442 
  119. Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 2010;11:474. https://doi.org/10.1186/1471-2164-11-474