과제정보
The authors would like to thank all the members of the Animal Biotechnology Laboratory, Yonsei University, for their support and assistance throughout this project.
참고문헌
- Riera Romo M, Perez-Martinez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology 2016;148:125-39. https://doi.org/10.1111/imm.12597
- Delves PJ, Roitt IM. The immune system. N Engl J Med 2000;343:37-49. https://doi.org/10.1056/NEJM200007063430107
- Trowsdale J, Betz AG. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol 2006;7:241-6. https://doi.org/10.1038/ni1317
- Li X, Zhou J, Fang M, Yu B. Pregnancy immune tolerance at the maternal-fetal interface. Int Rev Immunol 2020;39:247-63. https://doi.org/10.1080/08830185.2020.1777292
- Gimeno-Molina B, Muller I, Kropf P, Sykes L. The role of neutrophils in pregnancy, term and preterm labour. Life 2022;12:1512. https://doi.org/10.3390/life12101512
- Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev 2019;99:1223-48. https://doi.org/10.1152/physrev.00012.2018
- Kumar V, Sharma A. Neutrophils: cinderella of innate immune system. Int Immunopharmacol 2010;10:1325-34. https://doi.org/10.1016/j.intimp.2010.08.012
- Gasteiger G, D'Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun 2017;9:111-25. https://doi.org/10.1159/000453397
- Blazkova J, Gupta S, Liu Y, et al. Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy. J Immunol 2017;198:2479-88. https://doi.org/10.4049/jimmunol.1601855
- Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol 2020;11:575197. https://doi.org/10.3389/fimmu.2020.575197
- Fiorenza MF, Amaral CDS, da Anunciacao ARA, et al. Possible impact of neutrophils on immune responses during early pregnancy in ruminants. Anim Reprod 2021;18:e20210048. https://doi.org/10.1590/1984-3143-AR2021-0048
- Mohammed S, Alhussien MN, Dang AK. Pregnancy stage-dependent modulation of neutrophil function may impact embryo survivability and pregnancy outcome in crossbred cows. Theriogenology 2022;191:200-6. https://doi.org/10.1016/j.theriogenology.2022.08.020
- Kaeoket K, Persson E, Dalin AM. Influence of pre-ovulatory insemination and early pregnancy on the infiltration by cells of the immune system in the sow endometrium. Anim Reprod Sci 2003;75:55-71. https://doi.org/10.1016/s0378-4320(02)00230-0
- Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008;9:503-10. https://doi.org/10.1038/ni1582
- Chester C, Fritsch K, Kohrt HE. Natural killer cell immunomodulation: targeting activating, inhibitory, and costimulatory receptor signaling for cancer immunotherapy. Front Immunol 2015;6:601. https://doi.org/10.3389/fimmu.2015.00601
- Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 2017;8:1124. https://doi.org/10.3389/fimmu.2017.01124
- Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol 2021;12:728291. https://doi.org/10.3389/fimmu.2021.728291
- Vasudevan S, Kamat MM, Walusimbi SS, Pate JL, Ott TL. Effects of early pregnancy on uterine lymphocytes and endometrial expression of immune-regulatory molecules in dairy heifers. Biol Reprod 2017;97:104-18. https://doi.org/10.1093/biolre/iox061
- Jia GX, Ma WJ, Wu ZB, et al. Single-cell transcriptomic characterization of sheep conceptus elongation and implantation. Cell Rep 2023;42:112860. https://doi.org/10.1016/j.celrep.2023.112860
- Tekin S, Hansen PJ. Natural killer-like cells in the sheep: functional characterization and regulation by pregnancy-associated proteins. Exp Biol Med 2002;227:803-11. https://doi.org/10.1177/153537020222700913
- Engelhardt H, Croy BA, King GJ. Evaluation of natural killer cell recruitment to embryonic attachment sites during early porcine pregnancy. Biol Reprod 2002;66:1185-92. https://doi.org/10.1095/biolreprod66.4.1185
- Yu Z, Croy BA, Chapeau C, King GJ. Elevated endometrial natural killer cell activity during early porcine pregnancy is conceptus-mediated. J Reprod Immunol 1993;24:153-64. https://doi.org/10.1016/0165-0378(93)90017-c
- Han J, Gu MJ, Yoo I, et al. Analysis of cysteine-X-cysteine motif chemokine ligands 9, 10, and 11, their receptor CXCR3, and their possible role on the recruitment of immune cells at the maternal-conceptus interface in pigs. Biol Reprod 2017;97:69-80. https://doi.org/10.1093/biolre/iox074
- Faas MM, Spaans F, De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front Immunol 2014;5:298. https://doi.org/10.3389/fimmu.2014.00298
- Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020;877:173090. https://doi.org/10.1016/j.ejphar.2020.173090
- Jablonski KA, Amici SA, Webb LM, et al. Novel markers to delineate murine m1 and m2 macrophages. PLoS ONE 2015;10:e0145342. https://doi.org/10.1371/journal.pone.0145342
- Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than m1 and m2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol 2015;6:263. https://doi.org/10.3389/fimmu.2015.00263
- Jiang X, Wang H. Macrophage subsets at the maternal-fetal interface. Cell Mol Immunol 2020;17:889-91. https://doi.org/10.1038/s41423-020-0435-6
- Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol 2009;82:24-31. https://doi.org/10.1016/j.jri.2009.08.001
- Jiang X, Wang H. Macrophage subsets at the maternal-fetal interface. Cell Mol Immunol 2020;17:889-91. https://doi.org/10.1038/s41423-020-0435-6
- Mansouri-Attia N, Oliveira LJ, Forde N, et al. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol Reprod 2012;87:123. https://doi.org/10.1095/biolreprod.112.101121
- Oliveira LJ, McClellan S, Hansen PJ. Differentiation of the endometrial macrophage during pregnancy in the cow. PLoS ONE 2010;5:e13213. https://doi.org/10.1371/journal.pone.0013213
- Jiwakanon J, Persson E, Dalin AM. The endometrium of the anoestrous female pig: studies on infiltration by cells of the immune system. Reprod Domest Anim 2006;41:191-5. https://doi.org/10.1111/j.1439-0531.2006.00681.x
- Han J, Yoo I, Lee S, Cheon Y, Yun CH, Ka H. Interleukin-10 and its receptors at the maternal-conceptus interface: expression, regulation, and implication for T helper 2 cytokine predominance and maternal immune tolerance in the pig, a true epitheliochorial placentation speciesdagger. Biol Reprod 2022;106:1159-74. https://doi.org/10.1093/biolre/ioac058
- Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005;11:613-30. https://doi.org/10.1093/humupd/dmi023
- Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009;27:519-50. https://doi.org/10.1146/annurev.immunol.021908.132612
- Auron PE, Webb AC, Rosenwasser LJ, et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 1984;81:7907-11. https://doi.org/10.1073/pnas.81.24.7907
- Boraschi D, Tagliabue A. The interleukin-1 receptor family. Semin Immunol 2013;25:394-407. https://doi.org/10.1016/j.smim.2013.10.023
- Simon C, Piquette GN, Frances A, Polan ML. Localization of interleukin-1 type I receptor and interleukin-1 beta in human endometrium throughout the menstrual cycle. J Clin Endocrinol Metab 1993;77:549-55. https://doi.org/10.1210/jcem.77.2.8345061
- De M, Sanford TR, Wood GW. Expression of interleukin 1, interleukin 6 and tumour necrosis factor alpha in mouse uterus during the peri-implantation period of pregnancy. J Reprod Fertil 1993;97:83-9. https://doi.org/10.1530/jrf.0.0970083
- Correia-Alvarez E, Gomez E, Martin D, et al. Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. J Reprod Immunol 2015;110:1-13. https://doi.org/10.1016/j.jri.2015.03.006
- Geisert RD, Lucy MC, Whyte JJ, Ross JW, Mathew DJ. Cytokines from the pig conceptus: roles in conceptus development in pigs. J Anim Sci Biotechnol 2014;5:51. https://doi.org/10.1186/2049-1891-5-51
- Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6:a016295. https://doi.org/10.1101/cshperspect.a016295
- Hirano T, Akira S, Taga T, Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol Today 1990;11:443-9. https://doi.org/10.1016/0167-5699(90)90173-7
- Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and gestational disorders. J Reprod Immunol 2012;95:1-14. https://doi.org/10.1016/j.jri.2012.05.004
- Tabibzadeh S, Kong QF, Babaknia A, May LT. Progressive rise in the expression of interleukin-6 in human endometrium during menstrual cycle is initiated during the implantation window. Hum Reprod 1995;10:2793-9. https://doi.org/10.1093/oxfordjournals.humrep.a135793
- De M, Sanford TH, Wood GW. Detection of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in the uterus during the second half of pregnancy in the mouse. Endocrinology 1992;131:14-20. https://doi.org/10.1210/endo.131.1.1611993
- Zhu Z, Li B, Wu Y, Wang X, Deng G. Interferon-tau increases BoLA-I for implantation during early pregnancy in dairy cows. Oncotarget 2017;8:95095-107. https://doi.org/10.18632/oncotarget.19282
- Rahman AN, Snibson KJ, Lee CS, Meeusen EN. Effects of implantation and early pregnancy on the expression of cytokines and vascular surface molecules in the sheep endometrium. J Reprod Immunol 2004;64:45-58. https://doi.org/10.1016/j.jri.2004.08.008
- Yoo I, Han J, Kim M, et al. Expression and regulation of interleukin 6 and its receptor at the maternal-conceptus interface during pregnancy in pigs. Theriogenology 2017;96:85-91. https://doi.org/10.1016/j.theriogenology.2017.04.007
- Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
- Hanna N, Hanna I, Hleb M, et al. Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J Immunol 2000;164:5721-8. https://doi.org/10.4049/jimmunol.164.11.5721
- Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 1993;151:4562-73.
- Thaxton JE, Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am J Reprod Immunol 2010;63:482-91. https://doi.org/10.1111/j.1600-0897.2010.00810.x
- Viganò P, Somigliana E, Mangioni S, Vignali M, Vignali M, Blasio AMD. Expression of interleukin-10 and its receptor is up-regulated in early pregnant versus cycling human endometrium. J Clin Endocrinol Metab 2002;87:5730-6. https://doi.org/10.1210/jc.2002-020435
- Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 2006;17:259-80. https://doi.org/10.1016/j.cytogfr.2006.05.001
- Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005;86:209-39. https://doi.org/10.1016/S0065-2776(04)86006-1
- Bulfone-Paus S, Durkop H, Paus R, Krause H, Pohl T, Onu A. Differential regulation of human T lymphoblast functions by IL-2 and IL-15. Cytokine 1997;9:507-13. https://doi.org/10.1006/cyto.1996.0194
- Kitaya K, Yasuda J, Yagi I, Tada Y, Fushiki S, Honjo H. IL-15 expression at human endometrium and decidua. Biol Reprod 2000;63:683-7. https://doi.org/10.1095/biolreprod63.3.683
- Ashkar AA, Black GP, Wei Q, et al. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J Immunol 2003;171:2937-44. https://doi.org/10.4049/jimmunol.171.6.2937
- Yu JJ, Sun HT, Zhang ZF, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction 2016;152:151-60. https://doi.org/10.1530/REP-16-0089
- Mansouri-Attia N, Oliveira LJ, Forde N, et al. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol Reprod 2012;87:123. https://doi.org/10.1095/biolreprod.112.101121
- Gordon SM. Interleukin-15 in outcomes of pregnancy. Int J Mol Sci 2021;22:11094. https://doi.org/10.3390/ijms222011094
- Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8-32. https://doi.org/10.1111/j.0105-2896.2004.00204.x
- Yang CH, Murti A, Pfeffer SR, Kim JG, Donner DB, Pfeffer LM. Interferon alpha /beta promotes cell survival by activating nuclear factor kappa B through phosphatidylinositol 3-kinase and Akt. J Biol Chem 2001;276:13756-61. https://doi.org/10.1074/jbc.M011006200
- Kalliolias GD, Ivashkiv LB. Overview of the biology of type I interferons. Arthritis Res Ther 2010;12 (Suppl 1):S1. https://doi.org/10.1186/ar2881
- Spencer TE, Ott TL, Bazer FW. tau-Interferon: pregnancy recognition signal in ruminants. Proc Soc Exp Biol Med 1996;213:215-29. https://doi.org/10.3181/00379727-213-44053
- Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol 1997;15:749-95. https://doi.org/10.1146/annurev.immunol.15.1.749
- Su X, Yu Y, Zhong Y, et al. Interferon-gamma regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 2015;16:838-49. https://doi.org/10.1038/ni.3205
- Manivasagam S, Klein RS. Type III interferons: emerging roles in autoimmunity. Front Immunol 2021;12:764062. https://doi.org/10.3389/fimmu.2021.764062
- Roberts RM, Chen Y, Ezashi T, Walker AM. Interferons and the maternal-conceptus dialog in mammals. Semin Cell Dev Biol 2008;19:170-7. https://doi.org/10.1016/j.semcdb.2007.10.007
- Platt JS, Hunt JS. Interferon-gamma gene expression in cycling and pregnant mouse uterus: temporal aspects and cellular localization. J Leukoc Biol 1998;64:393-400. https://doi.org/10.1002/jlb.64.3.393
- Yoo I, Kim D, Han J, et al. Transcriptomic analysis of interferon-gamma-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020;155:114-24. https://doi.org/10.1016/j.theriogenology.2020.05.045
- Paulesu L, Romagnoli R, Cintorino M, Ricci MG, Garotta G. First trimester human trophoblast expresses both interferon-gamma and interferon-gamma-receptor. J Reprod Immunol 1994;27:37-48. https://doi.org/10.1016/0165-0378(94)90013-2
- Bourke NM, Achilles SL, Huang SU, et al. Spatiotemporal regulation of human IFN-epsilon and innate immunity in the female reproductive tract. JCI Insight 2022;7:e135407. https://doi.org/10.1172/jci.insight.135407
- Li Q, Zhang M, Kumar S, et al. Identification and implantation stage-specific expression of an interferon-alpha-regulated gene in human and rat endometrium. Endocrinology 2001;142:2390-400. https://doi.org/10.1210/endo.142.6.8101
- Park Y, Han SJ. Interferon signaling in the endometrium and in endometriosis. Biomolecules 2022;12:1554. https://doi.org/10.3390/biom12111554
- Hansen TR, Sinedino LDP, Spencer TE. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017; 154:F45-F59. https://doi.org/10.1530/REP-17-0315
- Bazer FW, Johnson GA. Pig blastocyst-uterine interactions. Differentiation 2014;87:52-65. https://doi.org/10.1016/j.diff.2013.11.005
- Yoo I, Lee S, Cheon Y, Ka H. Matrix metalloproteinases: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs. Anim Biosci 2023;36:1167-79. https://doi.org/10.5713/ab.22.0478
- Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. https://doi.org/10.1111/febs.14466
- Du MR, Wang SC, Li DJ. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 2014;11:438-48. https://doi.org/10.1038/cmi.2014.68
- Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and function of chemokines at the maternal-fetal interface. Front Cell Dev Biol 2022;10:826053. https://doi.org/10.3389/fcell.2022.826053
- Nagaoka K, Nojima H, Watanabe F, et al. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem 2003;278:29048-56. https://doi.org/10.1074/jbc.M300470200
- Imakawa K, Imai M, Sakai A, et al. Regulation of conceptus adhesion by endometrial CXC chemokines during the implantation period in sheep. Mol Reprod Dev 2006;73:850-8. https://doi.org/10.1002/mrd.20496
- Sakumoto R, Hayashi KG, Fujii S, et al. Possible roles of cc- and cxc-chemokines in regulating bovine endometrial function during early pregnancy. Int J Mol Sci 2017;18:742. https://doi.org/10.3390/ijms18040742
- Choi Y, Seo H, Han J, Yoo I, Kim J, Ka H. Chemokine (c-c motif) ligand 28 and its receptor ccr10: expression and function at the maternal-conceptus interface in pigs. Biol Reprod 2016;95:84. https://doi.org/10.1095/biolreprod.116.141903
- Khalil RH, Al-Humadi N. Types of acute phase reactants and their importance in vaccination. Biomed Rep 2020;12:143-52. https://doi.org/10.3892/br.2020.1276
- Li Z, Hou Y, Zhao M, et al. Serum amyloid a, a potential biomarker both in serum and tissue, correlates with ovarian cancer progression. J Ovarian Res 2020;13:67. https://doi.org/10.1186/s13048-020-00669-w
- Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol 2022;13:978929. https://doi.org/10.3389/fimmu.2022.978929
- Watts DH, Krohn MA, Wener MH, Eschenbach DA. C-reactive protein in normal pregnancy. Obstet Gynecol 1991;77:176-80. https://doi.org/10.1097/00006250-199102000-00002
- Liu Q, Ryon J, Nilsen-Hamilton M. Uterocalin: a mouse acute phase protein expressed in the uterus around birth. Mol Reprod Dev 1997;46:507-14. https://doi.org/10.1002/(SICI)1098-2795(199704)46:4<507::AID-MRD9>3.0.CO;2-S
- Chapwanya A, Meade KG, Doherty ML, Callanan JJ, Mee JF, O'Farrelly C. Histopathological and molecular evaluation of Holstein-Friesian cows postpartum: toward an improved understanding of uterine innate immunity. Theriogenology 2009;71:1396-407. https://doi.org/10.1016/j.theriogenology.2009.01.006
- Gregula-Kania M, Kosior-Korzecka U, Patkowski K, Juszczuk-Kubiak E, Plewik M, Gruszecki TM. Acute-phase proteins, cortisol and haematological parameters in ewes during the periparturient period. Reprod Domest Anim 2020;55:393-400. https://doi.org/10.1111/rda.13628
- Lee S, Yoo I, Cheon Y, Ka H. Conceptus-derived cytokines interleukin-1beta and interferon-gamma induce the expression of acute phase protein serum amyloid A3 in endometrial epithelia at the time of conceptus implantation in pigs. Anim Biosci 2023;36:441-50. https://doi.org/10.5713/ab.22.0334
- Garcia-Vazquez FA, Moros-Nicolas C, Lopez-Ubeda R, et al. Evidence of haptoglobin in the porcine female genital tract during oestrous cycle and its effect on in vitro embryo production. Sci Rep 2021;11:12041. https://doi.org/10.1038/s41598-021-90810-6
- Sandri S, Urban Borbely A, Fernandes I, et al. Serum amyloid A in the placenta and its role in trophoblast invasion. PLoS ONE 2014;9:e90881. https://doi.org/10.1371/journal.pone.0090881
- Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 2020;11:582779. https://doi.org/10.3389/fmicb.2020.582779
- Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020;19:311-32. https://doi.org/10.1038/s41573-019-0058-8
- Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med 2013;13:24-57.
- Frew L, Stock SJ. Antimicrobial peptides and pregnancy. Reproduction 2011;141:725-35. https://doi.org/10.1530/REP-10-0537
- Nair RR, Khanna A, Singh K. Role of inflammatory proteins S100A8 and S100A9 in pathophysiology of recurrent early pregnancy loss. Placenta 2013;34:824-7. https://doi.org/10.1016/j.placenta.2013.06.307
- Swangchan-Uthai T, Chen Q, Kirton SE, et al. Influence of energy balance on the antimicrobial peptides S100A8 and S100A9 in the endometrium of the post-partum dairy cow. Reproduction 2013;145:527-39. https://doi.org/10.1530/REP-12-0513
- Lee S, Jang H, Yoo I, Han J, Jung W, Ka H. Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs. Asian-Australas J Anim Sci 2019;32:1355-62. https://doi.org/10.5713/ajas.18.0920
- Jang H, Lee S, Yoo I, et al. Calcium-binding proteins S100A8, S100A9, and S100A12: expression and regulation at the maternal-conceptus interface in pigsdagger. Biol Reprod 2022;106:1098-111. https://doi.org/10.1093/biolre/ioac039
- Lee S, Yoo I, Cheon Y, Hong M, Jeon BY, Ka H. Antimicrobial peptides beta-defensin family: Expression and regulation in the endometrium during the estrous cycle and pregnancy in pigs. Dev Comp Immunol 2023;139:104596. https://doi.org/10.1016/j.dci.2022.104596
- Lee S, Yoo I, Cheon Y, Ka H. Spatiotemporal expression and regulation of peptidase inhibitor 3 and secretory leukocyte protease inhibitor at the maternal-fetal interface in pigs. Anim Biosci 2023;36:1034-43. https://doi.org/10.5713/ab.22.0415
- Lee S, Yoo I, Han J, Ka H. Antimicrobial peptides cathelicidin, PMAP23, and PMAP37: Expression in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy and regulation by steroid hormones and calcitriol in pigs. Theriogenology 2021;160:1-9. https://doi.org/10.1016/j.theriogenology.2020.10.034
- Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010;11:785-97. https://doi.org/10.1038/ni.1923
- Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol 2015;6:257. https://doi.org/10.3389/fimmu.2015.00257
- Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol 2009;9:729-40. https://doi.org/10.1038/nri2620
- Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential role of complement in pregnancy: from implantation to parturition and beyond. Front Immunol 2020;11:1681. https://doi.org/10.3389/fimmu.2020.01681
- Agostinis C, Bulla R, Tripodo C, et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J Immunol 2010;185:4420-9. https://doi.org/10.4049/jimmunol.0903215
- Bulla R, Bossi F, Agostinis C, et al. Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol 2009;82:119-25. https://doi.org/10.1016/j.jri.2009.06.124
- Palomino WA, Argandona F, Azua R, Kohen P, Devoto L. Complement C3 and decay-accelerating factor expression levels are modulated by human chorionic gonadotropin in endometrial compartments during the implantation window. Reprod Sci 2013;20:1103-10. https://doi.org/10.1177/1933719113477486
- Li SH, Huang HL, Chen YH. Ovarian steroid-regulated synthesis and secretion of complement C3 and factor B in mouse endometrium during the natural estrous cycle and pregnancy period. Biol Reprod 2002;66:322-32. https://doi.org/10.1095/biolreprod66.2.322
- Banadakoppa M, Pennington K, Balakrishnan M, Yallampalli C. Complement inhibitor Crry expression in mouse placenta is essential for maintaining normal blood pressure and fetal growth. PLoS ONE 2020;15:e0236968. https://doi.org/10.1371/journal.pone.0236968
- Nakamura K, Kusama K, Bai R, et al. Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice. PLoS ONE 2017;12:e0178442. https://doi.org/10.1371/journal.pone.0178442
- Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 2010;11:474. https://doi.org/10.1186/1471-2164-11-474