DOI QR코드

DOI QR Code

Verification Test and Analysis for Clamping Fastening Technique between Deployable Mesh Antenna Structures and Mesh

전개형 메쉬 안테나 구조물과 메쉬 원단 간 클램핑 체결기법의 유효성 검증 시험 및 분석

  • Jung-Soo Park (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Bong-Geon Chae (STEPLab. Ltd) ;
  • Hyun-Ung Oh (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 박정수 (한국항공대학교 항공우주 및 기계공학부) ;
  • 채봉건 ((주)스텝랩) ;
  • 오현웅 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2024.04.17
  • Accepted : 2024.08.16
  • Published : 2024.10.31

Abstract

Recently, both volumes and weights of antennas are increasing because of advancement of satellite missions. Research studies on mesh deployable antennas that can be highly stowable and lightweight are also increasing. When a deployable mesh antenna is subjected to repeated deployment tests on the ground, vibration of launch environments can cause slip between the antenna structure and the mesh fabric, resulting in failure to maintain the surface curvature of the antenna and Openning Per Inch (OPI). Such failure is the main cause of RF performance and mission capability degradation. Thus, studying a fastening technique to prevent slip between the antenna structure and mesh fabric is essential. This study proposed a Clamping fastening technique using rivets between the antenna structure and the mesh fabric. To evaluate the fastening efficiency of the Clamping fastening technique, tensile tests were conducted according to antenna structure type and rivet increment. Results were analyzed and fastening efficiency of the proposed clamping fastening technique was verified.

최근 위성의 임무 고도화로 인하여 안테나의 부피 및 무게가 증가하고 있으며, 높은 수납효율과 초경량화 구현이 가능한 전개형 메쉬 안테나에 대한 연구가 급증하고 있다. 전개형 메쉬 안테나는 지상에서 반복 전개 시험 및 발사 진동 환경 아래서 안테나 구조물과 메쉬 원단 간 Slip 현상이 발생하게 되어 안테나 반사면의 곡률 유지 및 OPI 유지를 실패할 수 있으며, 이는 RF 성능 및 임무 수행 능력을 저하시키는 주된 원인이 된다. 이로 인해 안테나 구조물과 메쉬 원단 간 체결기법에 대한 연구는 필수적이며, 따라서 본 연구에서는 안테나 구조물과 메쉬 원단 간 Clamping 체결기법을 제안하였다. 위 기법의 체결성을 평가하기 위해 안테나 구조물의 형태 및 체결 포인트 증분에 따라 인장시험을 진행하였으며, 각 인장시험의 결과를 분석하여 제안한 Clamping 체결기법의 유효성을 검증하였다.

Keywords

Acknowledgement

본 논문은 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다.(22-CM-EC-32)

References

  1. D Sheth, H. Arora and D. B. Shah, "Investigation on design methods for cable mesh configuration of deployable space antenna reflector," International Journal of Space Structures vol. 35, no. 4, pp. 126-134, S eptember 2020.
  2. L. Scialino, P. Salvini, M. Marzia and Y. S. Gloy, "Structural Characterization and Modeling of Metallic Mesh Material for Large Deployable Reflectors," Institut fur Textiltechnik der RWTH Aachen University, pp. 182-192, October 2014.
  3. G. Tibert, "Deployable Tensegrity Structures for Space Applications," J. Spacecraft and Rockets, pp. 1-220, January 2002.
  4. S. Rao, L. Shafai, and K. S. Sharma, "Handbook of Reflector Antennas and Feed Systems Volume III: Applications of Reflectors," London, 2013.
  5. R. Mironov, S. Reznik, R. Rukavishnikov, V. Shishulina and V. Zavaruev, "Optical characterisation of metallic meshes for space antennas transformable reflectors," IOP Conference Series: Materials Science and Engineering, vol. 153, pp. 1-9, November 2015.
  6. https://secant.com/
  7. L. Beretta, E. Marotta, P. Savini, "Optical Method to measure mesh tensioning," Procedia Structural Integrity, vol. 24, pp. 267-278, 2019.
  8. J. H. Kim, S. A. Lee, T. Y. Park, H. S. Choi, H. R. Kim, B. G. Chae and H. U. Oh, "Analysis of Radio Frequency (RF) Characteristics and Effectiveness according to the Number of Gores of Mesh Antenna," J. Space Technol. Appl, vol. 1, no. 3, pp. 364-374, Nov ember 2021.
  9. https://oxford.space/#wrapped
  10. https://www.l3harris.com/all-capabilities/unfurlable-meshreflector-antenna
  11. M. Chandra, S. Kumar, S. Chattopadhyaya and P. Kumar, "A review on developments of deployable membrane-based reflector antennas," Advances in Space Research, vol. 68, no. 8, pp. 3749-3764, November 2021.
  12. G. M. Turner, "Passive Intermodulation Generation in Wire Mesh Deployable Reflector Antennas," January 1993
  13. M. Thormson, "The AstroMesh Deployable Reflector," Antennas and Propagation Society International Symposium, vol. 3, pp. 1516-1519, September 1999.
  14. J. S. Choi, "A Study on the Development Mechanism of Deployable mesh Reflector Antenna Based on Superelastic Shape Memory Alloy," February 2024.
  15. S. Han, Y. Sichen and Y. Bingen, "New Methodology of Surface Mesh Geometry Design for Deployable Mesh Ref lectors," Journal of Spacecraft and Rockets, vol. 55, no. 2, pp. 266-281, September 2017.