과제정보
본 연구는 2024년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No.2022R1A6A1A03056784). 또한 본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2024-00444205).
참고문헌
- B. Dhiman, V. Guleria, and P. Sharma, "Applications and future trends of carbon fiber reinforced polymer composites: a review," International Research Journal of Engineering and Technology, vol. 7, no. 10, pp. 1883-1889, Oct. 2020.
- M. Al-Dhaheri, K. A. Khan, R. Umer, F. Van Liempt, and W. J. Cantwell, "Process-induced deformation in U-shaped honeycomb aerospace composite structures," Composite Structures, vol. 248, pp. 112-503, Apr. 2020.
- D. H. Kim, S. W. Kim, H. K. Kim, S. C. Kim, and B. G. Shin, "A study on the verification method of bird strike certification requirements for civilian helicopters through numerical analysis," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 13, no. 6, pp. 70-79, Dec. 2019.
- M. Fiorina, A. Seman, B. Castanie, K. M. Ali, C. Schwob, and L. Mezeix, "Spring-in prediction for carbon/epoxy aerospace composite structure," Composite Structures, vol. 168, pp. 739-745, May 2017.
- D. H. Kim, S. W. Kim, and I. Lee, "Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters," Composite Structures, vol. 287, pp. 115-379, May 2022.
- D. H. Kim and S. W. Kim, "Process-induced distortion of triaxially braided composites considering different geometric parameters using simplified constitutive model with effective property," Finite Elements in Analysis and Design, vol. 222, pp. 103-974, Jul. 2023.
- A. Bhaduri, A. Gupt, and L. Graham-Brady, "Stress field prediction in fiber-reinforced composite materials using a deep learning approach," Composites Part B: Engineering, vol. 238, Jun. 2022.
- Y. Shokrollahi, M. M. Nikahd, K. Gholami, and G. Azamara, "Deep learning techniques for predicting stress fields in composite materials: A superior alternative to finite element analysis," Journal of Composites Science, vol. 7, no. 8, pp. 311-323, Jul. 2023.
- Y. Wang, C. Soutis, D. Ando, Y. Sutou, and F. Narita, "Application of deep neural network learning in composites design," European Journal of Materials, vol. 2, no. 1, pp. 117-170, Apr. 2022.
- J. Hou, B. You, J. Xu, and T. Wang, "Prediction of curing process for thermosetting prepreg compression molding process based on machine learning," Polymer Composites, vol. 43, no. 3, pp. 749-1762, Jan. 2022.
- S. Fan, J. Zhang, B. Wang, J. Chen, W. Yang, W. Liu, and Y. Li, "A deep learning method for fast predicting curing process-induced deformation of aeronautical composite structures," Composites Science and Technology, vol. 232, pp. 109-844, May 2023.
- W. I. Lee, A. C. Loos, and G. S. Springer, "Heat of reaction, degree of cure, and viscosity of Hercules 3501-6 resin," Journal of Composite Materials, vol. 16, no. 6, pp. 510-520, Jun. 1982.
- X. Liu, Z. Guan, X. Wang, et al., "Study on cure-induced residual stresses and spring-in deformation of L-shaped composite laminates using a simplified constitutive model considering stress relaxation," Composite Structures, vol. 272, p. 114-203, Oct. 2021.
- W. Chen and D. Zhang, "A micromechanics-based processing model for predicting residual stress in fiber-reinforced polymer matrix composites," Composite Structures, vol. 204, pp. 153-166, Aug. 2018.
- B. J. Kang, S. W. Cheon, H. S. Cho, Y. J. Ki, and T. S. Kim, "A deep neural network-based model for predicting sectional structural stiffness of rotorcraft blades," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 18, no. 1, pp. 21-28, Jan. 2024.
- V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," Proc. of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, Dec. 2014.
- S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint arXiv:1609.04747, Sep. 2016.