DOI QR코드

DOI QR Code

전산유체역학을 활용한 틸트로터 드론의 공기역학 해석 연구

Aerodynamic Analysis of Tilt-Rotor Drone Using Computational Fluid Dynamics

  • 투고 : 2024.06.13
  • 심사 : 2024.09.29
  • 발행 : 2024.10.31

초록

틸트로터 항공기의 로터각 변화는 항공기의 공기역학적 특성에 큰 영향을 미친다. 따라서 본 연구에서는 전산유체역학(CFD)을 활용하여 틸트로터 드론의 비행 속도와 로터각 변화에 따른 공기역학적 특성 변화를 분석하였다. 프로펠러에 의한 유동을 모사하기 위해 MRF(Multiple Reference Frame)기법을 적용하였다. 비행 모드별 드론의 양력과 항력의 경향을 분석하였고, 특정 비행 조건에서의 공력 성능 저하를 유효 받음각 변화 측면에서 분석하였다. 특정 비행 조건에서 프로펠러에 (-)유효 받음각이 발생하여 공력 성능이 저하되는 것을 확인하였다. 로터각과 비행 속도에 따라 프로펠러의 유효 받음각이 변화하므로 프로펠러의 RPM과 콜렉티브 피치 조절을 통해 유효 받음각을 조절하는 것이 필요하다.

Variation in rotor angle of a tiltrotor aircraft can significantly impact aerodynamic characteristics of the aircraft. This study utilized Computational Fluid Dynamics (CFD) to analyze aerodynamic performance of a tiltrotor drone with varying flight speeds and rotor angles. The Multiple Reference Frame (MRF) method was applied to simulate the flow generated by the propeller. Trends in lift and drag of the drone across flight modes were analyzed. Degradation in aerodynamic performance under specific flight conditions was examined in terms of changes in effective angle of attack. Results showed that the more negative the effective angle of attack on the propeller, the greater the degradation in aerodynamic performance. Since the effective attack angle of the propeller changes with rotor angle and flight speed, it is necessary to adjust the propeller's RPM and collective pitch to control the effective attack angle.

키워드

과제정보

이 논문은 2022년도 과학기술정보통신부의 재원으로 연구개발특구진흥재단의 지원을 받아 (주)나르마에서 수행하였으며(2022-DD-RD-0225), 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-003).

참고문헌

  1. L. A. Young, "What is a tiltrotor? A fundamental reexamination of the tiltrotor aircraft design space," Proceedings of the AHS International Technical Meeting on Aeromechanics Design for Transformative Vertical Flight, pp. 1-18, Jan. 2018. 
  2. H. Tadghighi and R. G. Rajagopalan, "A user's manual for ROTTILT solver: Tiltrotor fountain flow field prediction," NASA/CR-1999-208973, 1999. 
  3. M. A. Potsdam and R. C. Strawn, "CFD simulations of tiltrotor configurations in hover," Journal of the American Helicopter Society, vol. 50, no. 1, pp. 82-94, 2005. 
  4. D. R. Polak, W. Rehm, and A. R. George, "Effects of an image plane on the tiltrotor fountain flow," Journal of the American Helicopter Society, vol. 45, no. 2, pp. 90-96, 2000. 
  5. M. A. McVeigh, W. K. Grauer, and D. J. Paisley, "Rotor/airframe interactions on tiltrotor aircraft," Journal of the American Helicopter Society, pp. 44-55, 1990. 
  6. H. Wang, W. Sun, C. Zhao, S. Zhang, and J. Han, "Dynamic Modeling and Control for Tilt-Rotor UAV Based on 3D Flow Field Transient CFD," Drones, vol. 6, no. 338, pp. 1-20, 2022. 
  7. S. Kim and J. Choi, "Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles," Journal of The Korean Society of Visualization, vol. 9, no. 2, pp. 40-47, 2011. 
  8. C. Sheng and J. C. Narramore, "Computational simulation and analysis of bell boeing quad tiltrotor aero interaction," Journal of the American Helicopter Society, pp. 42002-1~15, 2009. 
  9. ANSYS Fluent User's Guide, ANSYS Inc., 2022. 
  10. K. Cho, H. Kim, I.-J. Park, and S. Jang, "Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propeller," Journal of the Korean Society for Aeronautical and Space Sciences, vol. 40, no. 11, pp. 917-926, 2012. 
  11. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994. 
  12. S. Seo, M. Ryu, L. Cho, and J. Cho, "Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD," Journal of the Korean Society for Aeronautical & Space Sciences, pp. 326-335, 2014. 
  13. ANSYS Fluent Theory Guide, ANSYS Inc., 2022. 
  14. ANSYS Meshing User's Guide, ANSYS Inc., 2022.