DOI QR코드

DOI QR Code

Optimal Design and Verification Studies on Orthogrid-Stiffened Cylinders Incorporating Improved Buckling Knockdown Factors

개선된 좌굴 설계 기준을 이용한 직교 격자 원통 구조의 최적 구조 설계 및 검증 연구

  • Chang-Hoon Sim (Department of Aerospace Engineering, Chungnam National University) ;
  • Jae-Sang Park (Department of Aerospace Engineering, Chungnam National University)
  • 심창훈 (충남대학교 항공우주공학과) ;
  • 박재상 (충남대학교 항공우주공학과)
  • Received : 2024.06.11
  • Accepted : 2024.08.14
  • Published : 2024.10.31

Abstract

Optimal design and verification studies were performed on an orthogrid-stiffened cylinder for a propellant tank of a space launch vehicle. Hypersizer, an optimal design code for aerospace structures, was used in the present optimal design study. Design optimization was conducted to minimize structural weight of the orthogrid-stiffened cylinder. In this study, KDFs with different values (0.40, 0.83, and 0.92) were considered for the design optimization. Three optimal cylinders were designed. As the KDF increased from 0.40 to 0.83 and 0.92, structural weights of optimal design models decreased by 27.70% and 30.08%, respectively. Postbuckling analysis was conducted using ABAQUS. Results showed that global buckling loads of those optimally designed models were higher than the design load. Global buckling loads of those optimal design models with initial imperfection were derived to be at least 1.64% higher than the design load (2,860 kN). Results of this study demonstrated that the optimal design satisfying the design load was appropriately conducted.

우주 발사체의 추진제 탱크 구조인 직교 격자 원통 구조에 대한 최적 설계 및 검증 연구를 수행하였다. 항공우주 구조의 최적 설계 코드인 Hypersizer가 최적 설계 연구에 사용되었으며, 직교 격자 원통의 구조 중량 최소화를 위한 최적 설계가 수행되었다. 본 연구에서는 서로 다른 값의 KDF (0.40, 0.83, 및 0.92)를 최적 설계에 적용하였고, 이를 통해 3개의 최적 설계 모델이 각각 설계되었다. KDF가 0.40에서 0.83 및 0.92로 증가함에 따라, 직교 격자 원통 구조의 구조 중량이 각각 27.70% 및 30.08% 감소하였다. 이후, ABAQUS의 비선형 후좌굴 해석을 이용하여, 설계 하중 보다 높은 전역 좌굴 하중을 갖는 최적 설계 모델이 구축되었는지 확인하기 위한 검증 연구를 수행하였다. 기하학적 초기 결함은 갖는 최적 설계 모델의 전역 좌굴 하중이 설계 하중 (2,860 kN)에 비해 최소 1.64% 높게 도출되어, 설계 하중을 만족시키는 최적 설계가 적절히 수행됨을 확인하였다.

Keywords

Acknowledgement

본 논문의 일부는 2024년도 한국항공우주학회 우주학술대회에서 발표되었습니다. 이 연구는 충남대학교(교육·연구 및 학생지도비)에 의해 지원되었음.

References

  1. Z. Shiler and S. Dubowski, M. Ragab and F. M. Cheatwood,"Launch vehicle recovery and reuse," Proc. of AIAA SPACE 2015 conference and exposition, pp. 4490, 2015. 
  2. L. Brevault, M. Balesdent, and S. Defoort, "Preliminary study on launch vehicle design: applications of multidisciplinary design optimization methodologies," Concurrent Engineering, vol. 26, no. 1, pp. 93-102, 2018. 
  3. V. I. Weingarten, P. Seide, and J. P. Peterson, "Buckling of thin-walled circular cylinders," NASA SP-8007, 1968. 
  4. W. Haynie, M. Hilburger, and M. Bogge, "Validation of lower-bound estimates for compression-loaded cylindrical shells," Proc. of 53rd AIAA. ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2015. 
  5. H. N. R. Wagner, C. Huhne, K. Rohwer, S. Niemann, and M. Wiedemann, "Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells," Composite Structures, vol. 160, pp. 1095-1104, 2017. 
  6. C. Huhne, R. Rolfes, E. Breitbach, and J. Tessmer, "Robust design of composite cylindrical shells under axial compression-simulation and validation," Thin-walled structures, vol. 46, no. 7-9, pp. 947-962, 2008. 
  7. H. N. R. Wagner and C. Huhne, "Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis," International Journal of Mechanical Sciences, vol. 135, pp. 410-430, 2018. 
  8. H. Ma, P. Jiao, H. Li, Z. Cheng, and Z. Chen, "Buckling analyses of thin-walled cylindrical shells subjected to multi-region localized axial compression: experimental and numerical study," Thin-walled structures, vol. 183, 2023, 110330. 
  9. Y. C. Fung and E. E. Sechler, "Buckling of thin-walled circular cylinders under axial compression and internal pressure," Journal of the Aeronautical Sciences, vol. 24, no. 5, pp. 351-356, 1957. 
  10. J. Hutchinson, "Axial buckling of pressurized imperfect cylindrical shells," AIAA journal, vol. 3, no. 8, pp. 1461-1466, 1965. 
  11. M. H. Jeon, H. J. Cho, C. H. Sim, Y. J. Kim, M. Y. Lee, I. G. Kim, and J. S. Park, "Experimental and numerical approach for predicting global buckling load of pressurized unstiffened cylindrical shells using vibration correlation technique," Composite Structures, vol. 305, 2023, 116460. 
  12. C. H. Sim, D. Y. Kim, J. S. Park, J. T. Yoo, Y. H. Yoon, and K. Lee, "Derivation of buckling knockdown factors for pressurized orthogrid-stiffened cylinders of launch vehicle structures," International Journal of Aeronautical and Space Sciences, vol. 24, no. 5, pp. 1295-1310, 2023. 
  13. C. H. Sim, D. Y. Kim, M. H. Jeon, J. S. Park, I. G. Kim, J. T. Yoo, Y. H. Yoon, and K. Lee, "Investigation of buckling knockdown factors for pressurized metallic cylinders using various numerical modeling techniques of initial imperfections," International Journal of Aeronautical and Space Sciences, vol. 25, no. 2, pp. 698-715, 2024. 
  14. M. Hilburger, W. Haynie, A. Lovejoy, M. Roberts, J. Norris, W. Waters, and H. Herring, "Sub-scale and full-scale testing of buckling-critical launch vehicle shell structures," Proc. of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, pp. 1688, 2012. 
  15. A. Lovejoy, M. Hilburger, and P. Chunchu, "Effects of buckling-knockdown factor, internal pressure and material on the design of stiffened cylinders," Proc. of 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, pp. 2778, 2010. 
  16. Collier Research Corp., Hypersizer user's manual, book 2: analytical method and verification examples, Collier Research & Development Corp., Hampton, 1998. 
  17. A. Hubner, J. G. Teng, and H. Saal, "Buckling behaviour of large steel cylinders with patterned welds," International Journal of Pressure Vessels and Piping, vol. 83, no. 1, pp. 13-26, 2006. 
  18. R. R. Meyer, O. P. Harwood, M. B. Harmon, and J. I. Orlando, "Isogrid design handbook," MFS-22686, 1973. 
  19. C. H. Sim, J. S. Park, H. I. Kim, Y. L. Lee, and K. Lee, "Postbuckling analyses and derivations of knockdown factors for hybrid-grid stiffened cylinders," Aerospace Science and Technology, vol. 82, pp. 20-31, 2018. 
  20. L. Friedrich and K. U. Schroder, "Discrepancy between boundary conditions and load introduction of full-scale built-in and sub-scale experimental shell structures of space launcher vehicles," Thin-Walled Structures, vol. 98, pp. 403-415, 2016. 
  21. M. Deml and W. Wunderlich, "Direct evaluation of the 'worst' imperfection shape in shell buckling," Computer methods in applied mechanics and engineering, vol. 83, no. 1-4, pp. 201-222, 1997. 
  22. C. H. Sim, H. I. Kim, Y. L. Lee, J. S. Park, and K. Lee, "Derivations of knockdown factors for cylindrical structures considering different initial imperfection models and thickness ratios," International Journal of Aeronautical and Space Sciences, vol. 19, pp. 626-635, 2018.