DOI QR코드

DOI QR Code

나노 실리카 입자의 열처리가 전단농화유체의 유변학적 특성에 미치는 영향

The Influence of Heat Treatment of Nano-silica Particles on the Rheological Characteristics of Shear Thickening Fluids

  • 임재형 (한국항공대학교, 항공우주 및 기계공학과) ;
  • ;
  • 김상우 (한국항공대학교, 항공우주 및 기계공학과)
  • Jaehyeong Lim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Siti Zubaidah Binti Mat Daud (LANL-JBNU Engineering Institute-Korea, Jeonbuk National University) ;
  • Sang-Woo Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2024.06.04
  • 심사 : 2024.09.13
  • 발행 : 2024.10.31

초록

본 연구에서는 나노 실리카 입자의 열처리가 전단농화유체의 유변학적 특성에 미치는 영향을 분석하였다. 7 nm 크기의 직경을 갖는 나노 실리카 입자에 열처리(120 ℃, 180 ℃)를 하였고, 용매인 폴리에틸렌글리콜에 분산시켜 15 wt% 농도를 갖는 전단농화유체를 제조하였다. 이후 레오미터를 통해 제조된 STF의 유변학적 특성을 분석하였다. 그 결과, 열처리된 나노 실리카 입자를 사용하여 제조된 전단농화유체의 최대 점도는 8.96 ~ 213.17% 증가하였고, 임계 전단 속도는 14.89 ~ 57.25% 감소하였다. 또한 전단농화 효과는 최대 54.17% 향상됨을 확인하였다. 이러한 결과는 향후 항공 구조물에 적용하기 위한 설계 요구조건에 부합하는 유변학적 특성을 지닌 고성능 전단농화유체 제조에 활용될 것으로 기대된다.

The objective of this study was to analyze influence of heat treatment of nano-silica particles on rheological characteristics of shear thickening fluid. Heat treatment was conducted for nano-silica particles with a diameter of 7 nm at temperatures of 120 ℃ and 180 ℃, followed by dispersion in polyethylene glycol as a solvent to fabricate shear thickening fluids with a concentration of 15 wt%. Subsequently, rheological characteristics were investigated using a rheometer. Findings revealed that shear thickening fluids produced with thermally treated nano-silica particles exhibited a notable increase in maximum viscosity, ranging from 8.96% to 213.17%, accompanied by a decrease in critical shear rate, ranging from 14.89% to 57.25%. Furthermore, it was confirmed that the shear thickening effect was enhanced up to 54.17%. These results are anticipated to facilitate the fabrication of high-performance shear thickening fluids with rheological properties that align with design requirements for application in aerospace structures.

키워드

과제정보

이 연구는 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구사업임(No.2022R1A6A1A03056784, No. 2022R1F1A1069025).

참고문헌

  1. S.M. Yang, J.H. So, W.J. Kim, and D.K. Choi, "Rheology and its application," The Korean Society of Rheology, 2001.
  2. J. Lim, & S. W. Kim, "Low-velocity impact responses of composite structures incorporating shear thickening fluid tubes under various temperatures," Composite Structures, vol. 322, pp. 117349, Oct. 2023.
  3. E. Brown, N. A. Forman, C. S. Orellana, H. Zhang, B. W. Maynor, D. E. Betts, ... & H. M. Jaeger, "Generality of shear thickening in dense suspensions," Nature Materials, vol. 9, no. 3, pp. 220-224, Oct. 2010.
  4. Y. Park, Y. Kim, A. H. Baluch, & C. G. Kim, "Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric," International Journal of Impact Engineering, vol. 72, pp. 67-74, Oct. 2014.
  5. Q. Zhao, Y. He, H. Yao, & B. Wen, "Dynamic performance and mechanical model analysis of a shear thickening fluid damper," Smart Materials and Structures, vol. 27, no. 7, pp. 075021, Jun. 2018.
  6. J. Lim, & S. W. Kim, "Enhanced damping characteristics of carbon fiber reinforced polymer-based shear thickening fluid hybrid composite structures," Journal of Intelligent Material Systems and Structures, vol. 31, no. 20, pp. 2291- 2303, Jan. 2020.
  7. J. Lim, & S. W. Kim. "Unleashing the potential of CFRP laminate: enhancing mechanical characteristics with STF-Impregnated woven carbon fabric," Advanced Composite Materials, pp. 1-23, Feb. 2024.
  8. R. L. Hoffman, "Explanations for the cause of shear thickening in concentrated colloidal suspensions," Journal of Rheology, vol. 42, no. 1, pp. 111-123, Jan. 1998.
  9. J. W. Bender, N. J. Wagner. "Optical measurement of the contribution of colloidal forces to the rheology of concentrated colloidal dispersions," Journal of Colloid and Interface Science, vol. 172, no. 1, pp. 171-184, Jun. 1995.
  10. S. Gurgen, M. C. Kushan, and W. Li, "The effect of carbide particle additives on rheology of shear thickening fluids," Korea-Australia Rheology Journal, vol. 28, no. 2, pp. 121-128, May. 2016.
  11. M. Wei, Y. Lv, L. Sun, & H. Sun, "Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions," Colloid and Polymer Science, vol. 298, no. 3, pp. 243-250, Jan. 2020.
  12. R. Wei, B. Dong, F. Wang, J. Yang, Y. Jiang, W. Zhai, & H. Li, "Effects of silica morphology on the shear-thickening behavior of shear thickening fluids and stabbing resistance of fabric composites," Journal of Applied Polymer Science, vol. 137,no. 24, pp. 48809, Jun. 2020.
  13. B. W. Lee, S. H. Lee, C. G. Kim, B. I. Yoon, & J. G. Paik, "A Study on the Low Speed Impact Response and Frictional Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics," Composites Research, vol. 21, no. 2, pp. 15-24, Apr. 2008.
  14. A. D. Moriana, T. Tian, V. Sencadas, & W. Li, "Comparison of rheological behaviors with fumed silica-based shear thickening fluids," Korea-Australia Rheology Journal, vol. 28, pp. 197-205, Aug. 2016.
  15. S. R. Raghavan, H. J. Walls, & S. A. Khan, "Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding," Langmuir, vol. 16, no. 21, pp. 7920-7930, May. 2000.
  16. M. Yu, X. Qiao, X. Dong, & K. Sun, "Effect of particle modification on the shear thickening behaviors of the suspensions of silica nanoparticles in PEG," Colloid and Polymer Science, vol. 296, pp. 1767-1776, Sep. 2018.
  17. R. Sharma, S. K. Verma, I. Biswas, D. Bhattacharjee, & P. Kamal, "Effect of thermal surface activation of silica nanoparticles on the rheological behavior of shear thickening fluid," Materials Research Express, vol. 6, no. 6, pp. 065710, Mar. 2019.
  18. B. Chu, A. T. Brady, B. D. Mannhalter, & D. R. Salem, "Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions," Journal of Physics D: Applied Physics, vol. 47, no. 33, pp. 335302, Jul. 2014.
  19. Z. Cheng, H. Shan, Y. Sun, L. Zhang, H. Jiang, & C. Li, "Evolution mechanism of surface hydroxyl groups of silica during heat treatment," Applied Surface Science, vol. 513, pp. 145766, May. 2020.
  20. A. Behrang, M. Grmela, C. Dubois, S. Turenne & P. G. Lafleur, "Influence of particle-matrix interface, temperature, and agglomeration on heat conduction in dispersions," Journal of Applied Physics, vol. 114, no. 1, Jun, 2013.
  21. M. Praeger, I. L. Hosier, A. S. Vaughan, & S. G. Swingler, "The effects of surface hydroxyl groups in polyethylene-silica nanocomposites," In 2015 IEEE Electrical Insulation Conference (EIC), pp. 201-204, jun. 2015.