DOI QR코드

DOI QR Code

달 심부 굴착을 위한 마이크로파 조사의 현무암 물성 영향에 대한 실험적 연구

An Experimental Study on the Effects of Microwave Irradiation on Basalt Properties for Lunar Deep Excavation

  • 황지혜 (강원대학교 에너지.인프라 융합학과) ;
  • 고태영 (강원대학교 에너지.자원공학과)
  • Ji Hye Hwang (Department of Integrated Energy and Infra System, Kangwon National University) ;
  • Tae Young Ko (Department of Energy and Resources Engineering, Kangwon National University)
  • 투고 : 2024.10.11
  • 심사 : 2024.10.22
  • 발행 : 2024.10.31

초록

본 연구는 마이크로파 조사가 현무암의 물성에 미치는 영향을 분석하여 달 표면 및 심부 굴착을 위한 효율적인 기술적 가능성을 탐구했다. 실험을 통해 마이크로파 조사 시간에 따른 현무암 시험편의 P파 속도, Leeb 경도, Schmidt 해머 반발 경도, 세르샤 마모 지수, 일축압축강도, 탄성계수, 온도변화를 측정하였다. 연구 결과, 마이크로파 조사는 현무암의 미세균열을 발생시키고 물리적 강도를 감소시켰다. 특히 5분간의 마이크로파 조사 후 일축압축강도와 탄성계수가 크게 감소하였으며, 조사 시간 증가에 따라 P파 속도가 현저히 감소하여 암석 내부의 구조적 약화를 확인하였다. 이는 암석 내부로 침투한 마이크로파의 열응력 유발 및 광물 간 열팽창 차이로 인한 균열 확장이 주된 원인으로 분석된다. 본 연구는 달 환경과 유사한 조건에서 마이크로파 조사의 암석 약화 효과를 확인하여, 달 표면 및 심부 굴착 작업의 효율성을 크게 향상시킬 수 있는 가능성을 제시하였다.

This study investigated the effects of microwave irradiation on the physical properties of basalt to explore its potential as an efficient technique for lunar surface and deep excavation. Experiments were conducted to measure changes in P-wave velocity, Leeb hardness, Schmidt hammer rebound hardness, Cerchar Abrasivity Index (CAI), Uniaxial compressive strength (UCS), Young's modulus, and temperature of basalt specimens according to microwave irradiation time. Results showed that microwave irradiation induced microcracks in basalt and reduced its physical strength. Notably, after 5 minutes of microwave irradiation, UCS and Young's modulus decreased significantly. P-wave velocity also decreased markedly with increased irradiation time, indicating internal structural weakening of the rock. This is primarily attributed to thermal stress induced by microwave penetration into the rock and crack propagation due to differential thermal expansion between minerals. By confirming the rock weakening effect of microwave irradiation under conditions similar to the lunar environment, this study suggests the possibility of greatly improving the efficiency of lunar surface and deep excavation operations.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업(과제번호 20240184-001, 극한건설 환경구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발)과 2024년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행되었습니다(2021060003, 스마트 마이닝 전문 인력 양성).

참고문헌

  1. Ali, A.Y., and Bradshaw, S.M., 2009, Quantifying damage around grain boundaries in microwave treated ores. Chemical Engineering and Processing: Process Intensification, 48(11-12), 1566-1573. 
  2. Alshibli, K.A., and Hasan, A., 2009, Strength properties of JSC-1A lunar regolith simulant. Journal of Geotechnical and Geo-environmental Engineering, 135(5), 673-679. 
  3. ASTM D2216-19, 2019, Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, D2216-19. ASTM International, West Conshohocken, PA,USA. 
  4. ASTM D5873-14, 2014, Standard test method for determination of rock hardness by rebound hammer method. ASTM International. West Conshohocken, PA, USA. 
  5. Bell, F.G., 2007. Engineering Geology, 2nd edition, Butterworth-Heinemann, p. 581.
  6. Browning, J., Meredith, P., and Gudmundsson, A., 2016, Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43(16), 8417-8425. 
  7. Corkum, A.G., Asiri, Y., El Naggar, H., and Kinakin, D., 2018, The Leeb hardness test for rock: an updated methodology and UCS correlation. Rock Mechanics and Rock Engineering, 51, 665-675. 
  8. Deyab, S.M., Rafezi, H., Hassani, F., Kermani, M., and Sasmito, A.P., 2021, Experimental investigation on the effects of microwave irradiation on kimberlite and granite rocks. Journal of Rock Mechanics and Geotechnical Engineering, 13(2), 267-274. 
  9. Fei, Y., 1995, Thermal expansion. Mineral physics and crystallography: a handbook of physical constants, 2, 29-44. 
  10. Hartlieb, P., Grafe, B., Shepel, T., Malovyk, A., and Akbari, B., 2017, Experimental study on artificially induced crack patterns and their consequences on mechanical excavation processes. International Journal of Rock Mechanics and Mining Sciences, 100, 160-169. 
  11. Hartlieb, P., Leindl, M., Kuc har, F., Antretter, T., and Moser, P., 2012, Damage of basalt induc ed by mic rowave irradiation. Minerals Engineering, 31, 82-89. 
  12. Hartlieb, P., Toifl, M., Kuchar, F., Meisels, R., and Antretter, T., 2016, Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Minerals Engineering, 91, 34-41. 
  13. Hassani, F., Nekoovaght, P.M., and Gharib, N., 2016, The influence of microwave irradiation on rocks for microwave-assisted underground excavation. Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 1-15. 
  14. Kahraman, S., Saygin, E., and Fener, M., 2024, The effect of microwave treatment on the abrasivity of igneous rocks. Arabian Journal of Geosciences, 17(1), 21. 
  15. Kingman, S.W., Jackson, K., Bradshaw, S.M., Rowson, N.A., and Greenwood, R., 2004, An investigation into the influence of microwave treatment on mineral ore comminution. Powder Technology, 146(3), 176-184. 
  16. Klosky, J.L., Sture, S., Ko, H.Y., and Barnes, F., 2000, Geotechnical behavior of JSC-1 lunar soil simulant. Journal of Aerospace Engineering, 13(4), 133-138. 
  17. Kovler, K., Wang, F., and Muravin, B., 2018, Testing of concrete by rebound method: Leeb versus Schmidt hammers. Materials and Structures, 51(5), 138. 
  18. Leeb, D., 1979, Dynamic hardness testing of metallic materials. NDT International, 12(6), 274-278. 
  19. Li, Y.H., Lu, G.M., Feng, X.T., and Zhang, X., 2017, The influence of heating path on the effect of hard rock fragmentation using microwave assisted method. Chinese Journal of Rock Mechanics and Engineering, 36(6), 1460-1468. 
  20. Lindroth, R.L., Kinney, K.K., and Platz, C.L., 1993, Responses of diciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology, 74(3), 763-777. 
  21. Liu, S., and Xu, J., 2015, An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63-70. 
  22. Lu, G.M., Feng, X.T., Li, Y.H., and Zhang, X., 2019, The microwave-induced fracturing of hard rock. Rock Mechanics and Rock Engineering, 52, 3017-3032. 
  23. Nekoovaght Motlagh, P., 2009, An investigation on the influence of microwave energy on basic mechanical properties of hard rocks. Doctoral Dissertation, Concordia University. 
  24. Pickles, C.A., 2009, Microwaves in extractive metallurgy: Part 1-Review of fundamentals. Minerals Engineering, 22(13), 1102-1111. 
  25. Prakash, I., and Pham, B.T., 2023, Geotechnical Evaluation of Basalt Rocks: a review in the context of the construction of Civil Engineering structures. Journal of Science and Transport Technology, 10-24. 
  26. Ryu, B.H., Baek, Y., Kim, Y.S., and Chang, I., 2015, Basic study for a Korean lunar simulant (KLS-1) development. Journal of the Korean Geotechnical Society, 31(7), 53-63. 
  27. Ryu, B.H., Wang, C.C., and Chang, I., 2018, Development and geotechnical engineering properties of KLS-1 lunar simulant. Journal of Aerospace Engineering, 31(1), 04017083. 
  28. Sha, S., Rong, G., Tan, J., He, R., and Li, B., 2020, Tensile strength and brittleness of sandstone and granite after high-temperature treatment: a review. Arabian Journal of Geosciences, 13, 1-13. 
  29. Siegesmund, S., Sousa, L., and Knell, C., 2018, Thermal expansion of granitoids. Environmental earth sciences, 77, 1-29. 
  30. Sirdesai, N.N., Singh, T.N., and Gamage, R.P., 2017, Thermal alterations in the poro-mechanical characteristic of an Indian sandstone - a comparative study. Engineering Geology, 226, 208-220. 
  31. Wang, G., Song, L., Liu, X., Ma, X., Qiao, J., Chen, H., and Wu, L., 2024, Mechanical properties and damage evolution characteristics of thermal damage basalt under triaxial loading, Rock Mechanics and Rock Engineering, 57(2), 1117-1135 
  32. Warren, N., Trice, R., Soga, N., and Anderson, O.L., 1973, Rock physics properties of some lunar samples, in Proceedings the Fourth Lunar Science Conference, pp. 2611-2629. 
  33. Wei, W., Shao, Z., Zhang, Y., Qiao, R., and Gao, J., 2019, Fundamentals and applic ations of microwave energy in rock and concrete processing-A review. Applied Thermal Engineering, 157, 113751. 
  34. West, G., 1981, A review of rock abrasiveness testing for tunnelling, Proceedings of ISRM International Symposium, pp. 585-594. 
  35. Whittles, D.N., Kingman, S.W., and Reddish, D. J., 2003, Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage. International Journal of Mineral Processing, 68(1-4), 71-91. 
  36. Yang, X., Zhu, H., Zhou, X., and Nie, A., 2020, Experimental investigation on the evolution of structure and mechanical properties of basalt induced by microwave irradiation. RSC Advances, 10(54), 32723-32729. 
  37. Yao, H., and Yao, J., 2023, Strength Degradation and Fracture Mechanism of Sandstone Under Microwave Irradiation. Geotechnical and Geological Engineering, 41(3), 2201-2209. 
  38. Yoon, J., Min, K.B., Park, E.S., and Jung, Y.B., 2020, A Basic Study on Borehole Breakout under Room Temperature and High Temperature True Triaxial Compression. Tunnel and Underground Space, 30(6), 559-572. 
  39. Youn, D.J., Sun, C., and Li, Z., 2022, Numerical Analysis of Laboratory Heating Experiment on Granite Specimen. Tunnel and Underground Space, 32(6), 558-567. 
  40. Zeng, X., He, C., Oravec, H., Wilkinson, A., Agui, J., and Asnani, V., 2010, Geotechnical properties of JSC-1A lunar soil simulant. Journal of Aerospace Engineering, 23(2), 111-116.