DOI QR코드

DOI QR Code

보강된 픽커터의 커터작용력과 마모손상분석을 통한 현장적용성 검토

Field Applicability of Coated Conical Pickcutters through Cutter Force and Wear Damage Analysis

  • 최순욱 (한국건설기술연구원 지반연구본부 ) ;
  • 장수호 (한국건설기술연구원 지반연구본부 ) ;
  • 이철호 (한국건설기술연구원 지반연구본부 ) ;
  • 강태호 (한국건설기술연구원 지반연구본부 ) ;
  • 정호영 (부경대학교 에너지자원공학과 )
  • Soon-Wook Choi (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Soo-Ho Chang (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chulho Lee (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Tae-Ho Kang (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hoyoung Jeong (Department of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2024.10.10
  • 심사 : 2024.10.15
  • 발행 : 2024.10.31

초록

본 연구에서는 삽입재 주변부 보강이 픽커터의 마모손상에 주는 효과를 파악하기 위한 현장시험을 수행하였다. 현장시험 수행에 앞서 보강 픽커터와 무보강 픽커터에 대한 선형절삭시험을 통해 픽커터의 보강이 커터작용력에 주는 영향을 확인하였고 그 결과를 기반으로 로드헤더의 용량검토를 수행하였다. 커터 작용력 분석 결과, 평균 연직력과 절삭력은 보강여부에 상관없이 유사했으나, 최대 연직력과 절삭력은 보강여부에 따라 표준편차가 크게 나타났다. 토크 검토에서 평균 절삭력을 사용할 경우는 관입깊이 6 mm 이하, 최대절삭력을 사용할 경우는 4 mm 이하가 적합한 것으로 산정되었다. 마모손상 분석에서는 각 픽커터의 사용개수, 삽입재가 유지되는 개수, 편마모 발생 개수, 사용 전과 후의 중량 차이에서 중량 손실을 제외하면 보강된 픽커터가 보강되지 않은 픽커터에 비해 16%에서 최대 28%까지 향상된 성능을 보여주었다. 이와 같은 결과로부터 픽커터의 보강이 픽커터의 내구성 향상에 상당한 영향을 미친다는 것을 확인할 수 있었다. 다만 픽커터의 보강은 무보강에 비해 재료비와 추가 공정에 의해 비용이 높으므로 성능 향상에 의한 효과와 비용문제를 고려하여 선정할 필요가 있다.

In this study, a field test was conducted to determine the effect of reinforcement around the insert on the wear damage of the pickcutter. Prior to the field test, a linear cutting test was conducted on the reinforced pickcutter and unreinforced pickcutter to determine the effect of the pickcutter reinforcement on the cutter force, and the capacity of the roadheader was checked based on the results. The cutter force analysis showed that the average normal force and cutting force were similar regardless of the reinforcement, but the maximum normal force and cutting force showed a large standard deviation depending on the reinforcement. From the torque review, it was determined that a depth of penetration of 6 mm or less using the average cutting force and 4 mm or less using the maximum cutting force was appropriate. In the wear damage analysis, the number of used pickcutters, the number of pickcutters with inserts retained, the number of cases of uneven wear, and the difference in weight between before and after use showed that the reinforced pickcutters outperformed the unreinforced pickers by 16% to 28%. From these results, we can conclude that pickcutter reinforcement has a significant impact on the durability of the pickcutter. However, the cost of reinforcing pickcutters is higher than that of unreinforced pickcutters due to material costs and additional processes, so it is necessary to consider the effect of performance improvement and cost.

키워드

과제정보

본 연구는 한국건설기술연구원의 주요사업인 "최대 압축강도 100 MPa의 암반 굴착이 가능한 로드헤더용 픽커터 국산화 기술 개발(과제번호: 20240105-001)"의 일환으로 수행되었습니다.

참고문헌

  1. Asbury, B., Cigla, M., and Balci, C., 2002, Design methodology, testing and evaluation of a continuous miner cutterhead for dust reduction in underground coal mining, 2002 SME Annual Meeting, February 25-27, 1-8.
  2. Balci, C., and Bilgin, N., 2007, Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines, International Journal of Rock Mechanics & Mining Sciences, 44(3), 468-476.
  3. Balci, C., Demircin, M.A., Copur, H., and Tuncdemir, H., 2004, Estimation of optimum specific energy based on rock properties for assessment of roadheader performance, The Journal of The South African Institute of Mining and Metallurgy, 104(11), 633-642.
  4. Boloz, L., 2019, Directions for increasing conical picks' durability. New Trends in Production Engineering, 2(1).
  5. Chang, S.-H, Choi S.-W, Park, K.-I., Jeon, S., 2005, Performance Estimation of TBM Disc Cutter by the Linear Cutting Test. Journal of the Korean Society of Civil Engineers C, 25(6C), 429-436.
  6. Chang, S.-H., Kang, T.-H., Lee, C., and Choi, S.-W., 2023, Statistical Analysis of Geometric Parameters and Rock Conditions of Pick Cutters for Roadheaders, Tunnels & Underground Space, 33(5), 414-424.
  7. Cho, M.-G., Cho, J.-W., Kim, M.-G., Jeong, J.-H., and Choi, S.-H., 2023, Operating Process of Transverse Type Roadheader for Tunnel Excavation in Korea, Tunnel and Underground Space, 33(1), 1-9.
  8. Choi, S.W., Chang, S.H., Lee, C., Lee, G.P., Bae, Y.H., and Ha, T.W., 2015, Performance evaluation of conical picks for roadheader in copper mines. Tunnel and Underground Space, 25(6), 496-504.
  9. Choi, S.W., Chang, S.H., Park, Y.T., Lee, G.P., and Bae, G.J., 2014a. Comparative analysis of cutter acting forces and axial stresses of single and double disc cutters by linear cutting tests. Journal of Korean Tunnelling and Underground Space Association, 16(2), 181-191.
  10. Choi, S.W., Chang, S.H., Park, Y.T., and Lee, G.P., 2014b, Performance estimation of conical picks with slim design by the linear cutting test (I): depending on attack angle variation, Journal of Korean Tunnelling and Underground Space Association, 16(6), 573-584.
  11. Choi, S.W., Chang, S.H., Lee, G.P., and Park, Y.T., 2014c, Performance estimation of conical picks with slim design by the linear cutting test (II): depending on skew angle variation, Journal of Korean Tunnelling and Underground Space Association, 16(6), 585-597.
  12. Choi, S.W., Lee, C., Kang, T.H., and Chang, S.H., 2022, Field Test for Estimation of Acting Force on the Drum Cutter Attachment, Tunnelling and Underground Space, 32(6), 373-385.
  13. Choi, S.W., Kang, T.H., Chang, S.H., Lee, C., Lee, G.P., and Kim, C.Y., 2016, Performance estimation depending on the insert size of conical picks by linear cutting test, Journal of Korean Tunnelling and Underground Space Association, 18(2), 221-233.
  14. Jeong, H., and Jeon, S., 2018, Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks. Journal of Korean Tunnelling and Underground Space Association, 20(1), 161-182.
  15. Jung, J.H., Yim, J.H., Lee, J.W., Kang, H.B., Kim, D.H., and Shin, Y.J., 2023, Development of roadheader performance prediction model and review of machine specification, Journal of Korean Tunnelling and Underground Space Association, 25(3), 221-243.
  16. Kang, H., Jang, J.S., Park, J.Y., Cho, J.W., Jung, M.S., and Lee, J.W., 2016, Method for measuring 3-axis cutting force of a pick cutter using the single-axis load cell array. Journal of Advanced Marine Engineering and Technology, 40(9), 749-755.
  17. Krauze, K., Skowronek, T., and Mucha, K., 2016, Influence of the hard-faced layer welded on tangential-rotary pick operational part on to its wear rate. Archives of Mining Sciences, 61(4).
  18. Krauze, K., Wydro, T., and Mucha, K., 2019, Investigations into the wear rate of conical picks with abrasion-resistant coatings in laboratory conditions. In IOP Conference Series: Materials Science and Engineering (Vol. 679, No. 1, p. 012012). IOP Publishing.
  19. Park, Y.T., Choi, S.W., Park, J.H., Lee, C.H., and Chang, S.H., 2013, Excavation mechanism of roadheader and statistical analysis of its key design parameters based on database, Tunnel and Underground Space, 23(5), 428-441.
  20. Pichler, J., 2011, Mechanical excavation of tunnels with Roadheaders, Lecture note, Post graduate master course - Tunnelling and Tunnel Boring Machine, Politecnico Di Torino, 1-78.
  21. Prysyazhnyuk, P., Ivanov, O., Matvienkiv, O., Marynenko, S., Korol, O., and Koval, I., 2022, Impact and abrasion wear resistance of the hardfacings based on high-manganese steel reinforced with multicomponent carbides of Ti-Nb-Mo-VC system. Procedia Structural Integrity, 36, 130-136.
  22. Rojek, J., Onate, E., Kargl, H., Labra, C., Akerman, J., Restner, U., Lammer, E., and Zarate, F., 2008, "Prediction of wear of roadheader picks using numerical simulations", Geomechanik und Tunnelbau: Geomechanik und Tunnelbau, 1(1), 47-54.
  23. Rostami, J., 2013, Final Report on Cutterhead Design Procedures and Performance Evaluations for Roadheader, Submitted to KICT, p. 34.
  24. Sandvik, 2010, Mineral Ground Tools - Mining, Product Catalog, http://www.miningandconstruction.sandvik.com.
  25. Su, O., and Akcin, N.A., 2011, Numerical simulation of rock cutting using the discrete element method, International Journal of Rock Mechanics & Mining Sciences, 48(3), 434-442.