DOI QR코드

DOI QR Code

Semi-empirical Approach to Investigate Tunnelling-induced Ground Movements and their Effects on at-grade Rail Track in Twin Side-by-side Tunnel Layouts

병렬터널 배치에서 터널 굴착이 기존 철도 선로에 미치는 영향에 관한 반경험적 접근

  • Received : 2024.10.08
  • Accepted : 2024.10.18
  • Published : 2024.10.31

Abstract

There has been increased interest, media coverage, and debate over constructing new underground structures to replace existing at-grade rail tracks. This new scheme aims to free up space to provide cities with room for more housing with green amenities. Due to urbanisation, tunnel engineers have encountered greenfield ground conditions in cities on only a few occasions. However, the new scheme provides opportunities to investigate a unique scenario where new tunnels are driven parallel to the existing rail tracks on the surface with little ground cover in soft ground. This paper presents findings obtained from a semi-empirical approach that aims to investigate the likely track irregularity associated with tunnelling-induced ground movements. This paper presents contour maps that show track rotation according to the relative position of the new tunnel and existing rail tracks. Tunnel engineers would consult these maps for their tunnel route design for the scheme.

지상에 위치한 기존의 철도 선로를 대체하기 위한 새로운 지하 구조물 건설에 대한 관심, 언론 보도, 및 논쟁이 증가하고 있다. 이 새로운 사업 계획은 도시에 더 많은 주택과 녹색 편의시설을 제공하기 위한 공간 확보를 목표로 한다. 도심은 이미 밀집되어 있기 때문에 터널 기술자가 개발되지 않은 자연 그대로의 지반 조건을 맞닥뜨리는 경우는 거의 없다. 반면, 이 새로운 사업 계획은 토사 조건에서 새 터널이 작은 토피를 사이에 두고 지표면에 있는 기존 선로에 평행하게 시공되는 독특한 시나리오를 제공한다. 본 논문은 터널 굴착에 따라 선로에 발생할 것으로 예상되는 궤도 틀림을 산정하기 위해 반경험적 접근 방법을 이용해 수행된 연구에 관해 기술한 내용을 수록한다. 본 논문은 새 터널과 기존 선로의 상대 위치에 따른 선로의 회전을 도시한 등고선도를 제시한다. 터널 기술자는 본 논문이 제시하는 등고선도를 철도지하화 사업 관련 터널 노선 설계에 참고할 수 있다.

Keywords

Acknowledgement

이 연구는 한국철도기술연구원 기본사업(디지털 기반 운행철도 입체화 안전성 향상 기술개발, PK2402A2)의 연구비 지원으로 수행되었습니다.

References

  1. Attewell, P.B., Yeates, J., and Selby, A.R., 1986, Soil movements induced by tunnelling and their effects on pipelines and structures, Blackie, 1st edition, p.317.
  2. Burland, J.B., 2001, Assessment methods used in design, In J.B. Burland, J.R. Standing & F.M. Jardine (Eds.), Building response to tunnelling - Case studies from construction of the Jubilee line extension, London, 1, 23-44, Thomas Telford Ltd.
  3. Cao, S., Cui, J., Fang, Y., and Deng, R., 2019, Performance of slurry TBM tunnelling in sandy cobble ground - A case study in Lanzhou, Tunnel Engineering, 23, 3207-3217.
  4. Chen, R.-P, Lin, X.-T., Kang, X., Zhong, Z.-Q., Liu, Y., Zhang, P., and Wu, H.-N., 2018, Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing, Tunnelling and Underground Space Technology, 82, 468-481.
  5. Choi, J., Park, D., and Chung, J., 2019, Evaluation of track irregularity effect due to adjacent excavation on serviced railway line, The Journal of the Convergence on Culture Technology, 5(4), 401-406.
  6. Cooper, M.L., 2001, Tunnel-induced ground movements and their effects on existing tunnels and tunnel linings, PhD thesis, The University of Birmingham.
  7. Cording, E.J., and Hansmire, W.H., 1975, Displacement around soft ground tunnels, Proceedings of the 5th Pan-American Conference of Soil Mechannics and Foundation Engineering, 571-663.
  8. Gettu, R., Barragan, B., Garcia, T., Ortiz, J., and Justa, R., 2006, Fiber concrete tunnel lining: construction of a subway line in Barcelona, Concrete International, 28(8), 63-69.
  9. Jin, D., Yuan, D., Li, X., and Zheng, H., 2018, An in-tunnel grouting protection method for excavating twin tunnels beneath an existing tunnel, Tunnelling and Underground Space Technology, 71, 27-35.
  10. Korea National Railway, 2022, Track Maintenance Guidelines, Article 9: Track Irregularity Management Standards.
  11. Kurhan, D., Kurhan, M., Horvath, B., and Fischer, S., 2023, Determining the deformation characteristics of railway ballast by mathematical modeling of elastic wave propagation, Applied Mechanics, 4(2), 803-815.
  12. Lee, S.W., Chang, S.H., Park, K.H., and Kim, C.Y., 2011, TBM performance and development state in Korea, Procedia Engineering, 14, 3170-3175.
  13. Li, X., Yuan, D., Guo, Y., and Cai, Z., 2016, Use of a 10.22 m diameter EPB shield: a case study in Beijing subway construction, SpringerPlus, 5, 1-15.
  14. O'Reilly, M.P., and New, B.M., 1982, Settlements above tunnels in the United Kingdom - their magnitude and predition, Tunnelling 82', Ed. Jones, M.J., 173-181.
  15. Peck, R.B., 1969, Deep excavation and tunneling in soft ground, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-Art Report, 225-290.
  16. Seo, K.C., Kim, J.W., and Park, N.S., 2001, Subway tunnel under the Han river, Seoul, Structural Engineering International, 11(1), 25-28.
  17. Standing, J., and Burland, J., 2006, Unexpected tunnelling volume losses in the Westminster area, London, Geotechnique, 56(1), 11-26.
  18. Su, T., Zhang, Y., and Goh, K.H., 2017, Field performance of twin bored tunnelling in different geological conditions - Construction of MRT downtown line 3 in Singapore, Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, 1777-1780.
  19. Tucker, W., 2017, Crossrail project: the execution strategy for delivering London's Elizabeth line, Proceedings of the Civil Engineers, 170(CE5), 1600021.