DOI QR코드

DOI QR Code

Strategies for Enhancing Zinc Anode Stability and Safety in Aqueous Zinc Secondary Battery

수계 아연 이차 전지 아연 음극 안정성 및 안전성 향상 전략

  • Jong-Jin Park (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Gyeongtae Seo (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Yong-Tae Kim (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 박종진 (전남대학교 화공생명공학과) ;
  • 서경태 (전남대학교 화공생명공학과) ;
  • 김용태 (전남대학교 화공생명공학과)
  • Received : 2024.08.27
  • Accepted : 2024.09.06
  • Published : 2024.10.31

Abstract

The growing environmental concerns due to increased fossil fuel consumption have intensified the demand for sustainable and economically viable energy sources. Among the various energy storage devices, lithium-ion batteries (LIBs) are widely used in electronic devices and electric vehicles due to their high energy density and excellent cycle life. However, LIBs face challenges such as safety concerns due to side reactions, thermal expansion, and explosion risks, along with issues of limited resource availability and high costs. As a result, multivalent metals such as calcium, magnesium, zinc, iron, and aluminum are being explored as alternatives to lithium. Recently, there has been significant interest in developing aqueous zinc-ion battery (AZIB) due to their use of water as an electrolyte solvent, which enhances safety by reducing the risk of fire even in the event of a short circuit. Additionally, AZIBs offer benefits such as non-toxicity, fast ion conductivity, high volumetric capacity, and cost-effectiveness due to the abundance of zinc. Despite these advantages, AZIBs face challenges including dendrite formation on the zinc anode during cycling, leading to short circuits, corrosion, and hydrogen gas evolution, which can compromise battery performance and safety. This review discusses the underlying mechanisms of these issues and explores various strategies to stabilize the zinc anode and improve the overall performance of AZIBs.

Keywords

Acknowledgement

이 논문은 전남대학교 학술연구비(과제번호: 2024-0506) 지원에 의하여 연구되었음.

References

  1. Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu, Y. Xiao, P. Zhang, Zinc dendrite growth and inhibition strategies, Materials Today Energy, 20 (2021) 100692. 
  2. K.H. Shin, K.N. Jung, S.K. Yoon, S.H. Yeon, J.M. Shim, J.D. Joen, C.S. Jin, Y.S. Kim, K. Park, S. Jeong, Effects of electrolyte concentration on growth of dendritic zinc in aqueous solutions, Transactions of the Korean Hydrogen and New Energy Society, 23 (2012) 390-396. 
  3. Y. Gong, B. Wang, H. Ren, D. Li, D. Wang, H. Liu, S. Dou, Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: Principles, strategies, and challenges, Nano-Micro Letters, 15 (2023) 208. 
  4. X. Liu, Q. Ma, J. Wang, Q. Han, C. Liu, A biomimetic polymer-based composite coating inhibits zinc dendrite growth for high-performance zinc-ion batteries, ACS Applied Materials & Interfaces, 14 (2022) 10384-10393. 
  5. Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding, A. Omar, D. Mikhailova, Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries, ACS Applied Materials & Interfaces, 13 (2021) 16869-16875. 
  6. X. Zhang, Q. Ruan, L. Liu, D. Li, Y. Xu, Y. Wang, J. Liu, C. Huang, F. Xiong, Stable zinc metal anode with an ultrathin carbon coating for zinc-ion batteries, Journal of Electroanalytical Chemistry, 936 (2023) 117357. 
  7. J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong, S. Kheawhom, P. Wangyao, J. Qin, Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries, ACS Applied Energy Materials, 4 (2021) 4602-4609. 
  8. H. Cao, X. Huang, Y. Liu, Q. Hu, Q. Zheng, Y. Huo, F. Xie, J. Zhao, D. Lin, An efficient electrolyte additive of tetramethylammonium sulfate hydrate for dendritic-free zinc anode for aqueous zinc-ion batteries, Journal of Colloid and Interface Science, 627 (2022) 367-374. 
  9. Y. Quan, M. Yang, M. Chen, W. Zhou, X. Han, J. Chen, B. Liu, S. Shi, P. Zhang, Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability, Chemical Engineering Journal, 458 (2023) 141392. 
  10. P. Woottapanit, C. Yang, J. Cao, W. Limphirat, S. Saneewons na ayuttaya, X. Zhang, P. Wangyao, J. Qin, Inhibition of zinc dendrite growth by WC-cellulose separators for high-performance zinc-ion batteries, ACS Applied Energy Materials, 6 (2023) 10578-10584. 
  11. N. Zhao, Y. Zhang, Z. Zhang, C. Han, Y. Liang, J. Li, X. Wang, L. Dai, L. Wang, Z. He, Polyaniline functionalized separator as synergistic medium for aqueous zinc-ion batteries, Journal of Colloid and Interface Science, 642 (2023) 421-429. 
  12. J. Fu, Z. Paul Cano, M.G. Park, A. Yu, M. Fowler, Z. Chen, Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives, Advanced Materials, 29 (2017) 1604685. 
  13. X. Zhang, J.P. Hu, N. Fu, W.B. Zhou, B. Liu, Q. Deng, X.-W. Wu, Comprehensive review on zinc-ion battery anode: Challenges and strategies, InfoMat, 4 (2022) e12306. 
  14. H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Advanced rechargeable zinc-based batteries: Recent progress and future perspectives, Nano Energy, 62 (2019) 550-587. 
  15. G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries, ACS Energy Letters, 3 (2018) 2480-2501. 
  16. D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S.-Z. Qiao, An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage, Angewandte Chemie, 131 (2019) 7905-7910. 
  17. P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive, Angewandte Chemie, 133 (2021) 18395-18403. 
  18. Y. Zhang, S. Bi, Z. Niu, W. Zhou, S. Xie, Design of Zn anode protection materials for mild aqueous Zn-ion batteries, Energy Materials, 2 (2022) 200012. 
  19. J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: Focus on zinc metal anodes, Chemical Science, 11 (2020) 2028-2044. 
  20. J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions, Nano-Micro Letters, 10 (2018) 1-15. 
  21. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles, Chemical Reviews, 120 (2019) 851-918. 
  22. P. He, J. Huang, Chemical passivation stabilizes Zn anode, Advanced Materials, 34 (2022) 2109872. 
  23. J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun, B. Jia, S. Zhang, T. Ma, Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives, Nano-Micro Letters, 14 (2022) 1-47. 
  24. G. Wen, Z. Guo, Facile modification of NH2-MIL-125 (Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 541 (2018) 58-67. 
  25. L. Lei, F. Chen, Y. Wu, J. Shen, X.J. Wu, S. Wu, S. Yuan, Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes, Science China Chemistry, 65 (2022) 2205-2213. 
  26. C. Wang, Q. Xie, T. Guo, M. Fang, W. Mao, Y. Zhang, H. Wang, Understanding the role of titanium metal-organic framework nanosheets in modulating anode chemistry for aqueous zinc-ion batteries, Nano Letters, 23 (2023) 10930-10938. 
  27. X. Zhao, L. Liu, Z. Yu, W. Zhang, H. Fu, Microstructure development of different orientated nickel-base single crystal superalloy in directional solidification, Materials Characterization, 61 (2010) 7-12. 
  28. J. Sun, X. Zheng, K. Li, G. Ma, T. Dai, B. Ban, Y. Yuan, Scalable production of hydrogen evolution corrosion resistant Zn-Al alloy anode for electrolytic MnO2/Zn batteries, Energy Storage Materials, 54 (2023) 570-578. 
  29. S. Chen, H. Wang, M. Zhu, F. You, W. Lin, D. Chan, W. Lin, Revitalizing zinc-ion batteries with advanced zinc anode design, Nanoscale Horizons, 8 (2023) 29-54. 
  30. R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong, Y. Dai, Z. Du, Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective, Nano-Micro Letters, 15 (2023) 81. 
  31. M. Galinski, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes, Electrochimica Acta, 51 (2006) 5567-5580. 
  32. D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini, J.M. Pringle, H. Ohno, Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nature Reviews Materials, 1 (2016) 1-15. 
  33. L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang, J.A. Zapien, S. Chen, J. Fan, C. Zhi, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Advanced Materials, 32 (2020) 1908121. 
  34. R.J. Wilcox, B.P. Losey, J.C. Folmer, J.D. Martin, M. Zeller, R. Sommer, Crystalline and liquid structure of zinc chloride trihydrate: A unique ionic liquid, Inorganic Chemistry, 54 (2015) 1109-1119. 
  35. C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chemical Communications, 54 (2018) 14097-14099. 
  36. C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind, Y. Xu, S.I. Allec, The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free, Carbon Energy, 3 (2021) 339-348.