과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2022M3J8A1097260).
참고문헌
- X. Zhao, X. Ma, B. Chen, Y. Shang, M. Song, Challenges toward carbon neutrality in China: Strategies and countermeasures, Resources, Conservation & Recycling, 176 (2022) 105959.
- N.W. Arnell, J.A. Lowe, B. Lloyd-Hughes, T.J. Osborn, The impacts avoided with a 1.5 ℃ climate target: A global and regional assessment, Climatic Change, 147 (2018) 61-76.
- S. Sgouridis, D. Csala, U. Bardi, The sower's way: Quantifying the narrowing net-energy pathways to a global energy transition, Environmental Research Letters, 11 (2016) 094009.
- M.Z. Jacobson, M.A. Delucchi, Providing all global energy with wind, water, and solar power, part I: Technologies, energy resources, quantities and areas of infrastructure, and materials, Energy Policy, 39 (2011) 1154-1169.
- J.O'.M. Bockris, The hydrogen economy: Its history, International Journal of Hydrogen Energy, 38 (2013) 2579-2588.
- I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12 (2019) 463-491.
- S. van Renssen, The hydrogen solution?, Nature Climate Change, 10 (2020) 799-801.
- E. Spatolisano, G.D. Guido, L.A. Pellegrini, V. Calemma, A.R. de Angelis, M. Nali, Process sensitivity analysis and techno-economic assessment of hydrogen sulphide to hydrogen via H2S methane reformation, Journal of Cleaner Production, 330 (2022) 129889.
- J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Development of high pressure gaseous hydrogen storage technologies, International Journal of Hydrogen Energy, 37 (2012) 1048-1057.
- A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91 (2004) 157-172.
- M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, K.P. de Jong, Hydrogen storage using physisorption-materials demands, Applied Physics A: Materials Science & Processing, 72 (2001) 619-623.
- L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks, Chemical Society Reviews, 38 (2009) 1294-1314.
- J.O. Jensen, A.P. Vsetbo, Q. Li, N.J. Bjerrum, The energy efficiency of onboard hydrogen storage, Journal of Alloys and Compounds, 446-447 (2007) 723-728.
- R.B. Biniwale, S. Rayalu, S. Devotta, M. Ichikawa, Chemical hydrides: A solution to high capacity hydrogen storage and supply, International Journal of Hydrogen Energy, 33 (2008) 360-365.
- R. Lan, J.T.S. Irvine, S. Tao, Ammonia and related chemicals as potential indirect hydrogen storage materials, International Journal of Hydrogen Energy, 37 (2012) 1482-1494.
- E. Spatolisano, L.A. Pellegrini, A.R. de Angelis, S. Cattaneo, E. Roccaro, Ammonia as a carbon-free energy carrier: NH3 cracking to H2, Industrial & Engineering Chemistry Research, 62 (2023) 10813-10827.
- M.L. Carreon, Plasma catalytic ammonia synthesis: state of the art and future directions, Journal of Physics D: Applied Physics, 52 (2019) 483001.
- A. Barona, B. Etxebarria, A. Aleksanyan, G. Gallastegui, N. Rojo, E. Diaz-Tena, A unique historical case to understand the present sustainable development, Science and Engineering Ethics, 24 (2018) 261-274.
- R. Kumar, R. Singh, S. Dutta, Review and outlook of hydrogen production through catalytic processes, Energy & Fuels, 38 (2024) 2601-2629.
- R. Snoeckx, A. Bogaerts, Plasma technology-a novel solution for CO2 conversion?, Chemical Society Reviews, 46 (2017) 5805-5863.
- J. Hong, S. Prawer, A.B. Murphy, Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress, ACS Sustainable Chemistry & Engineering, 6 (2018) 15-31.
- I. Lucentini, X. Garcia, X. Vendrell, J. Llorca, Review of the decomposition of ammonia to generate hydrogen, Industrial & Engineering Chemistry Research, 60 (2021) 18560-18611.
- S. Peters, A.M. Adel-Mageed, S. Wohlrab, Thermocatalytic ammonia decomposition-status and current research demands for a carbon-free hydrogen fuel technology, ChemCatChem, 15 (2023) e202201185.
- A. Bogaerts, E.C. Neyts, Plasma technology: an emerging technology for energy storage, ACS Energy Letters, 3 (2018) 1013-1027.
- S. Bang, R. Snoeckx, M.S. Cha, Kinetic study for plasma-assisted cracking of NH3: approaches and challenges, Journal of Physical Chemistry A, 127 (2023) 1271-1282.
- M. Benes, G. Pozo, M. Abian, A. Millera, R. Bilbao, M.U. Alzueta, Experimental study of the pyrolysis of NH3 under flow reactor conditions, Energy & Fuels, 35 (2021) 7193-7200.
- J.A. Andersen, K. van 't Veer, J.M. Christensen, M. Ostberg, A. Bogaerts, A.D. Jensen, Ammonia decomposition in a dielectric barrier discharge plasma: insights from experiments and kinetic modeling, Chemical Engineering Science, 271 (2023) 118550.
- A.A. Zamri, M.Y. Ong, S. Nomanbhay, P.L. Show, Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: a review, Environmental Research, 197 (2021) 111204.
- X. Zhang, M.S. Cha, Ammonia cracking for hydrogen production using a microwave argon plasma jet, Journal of Physics D: Applied Physics, 57 (2024) 065203.
- M. Ramakers, S. Heijkers, T. Tytgat, S. Lenaerts, A. Bogaerts, Combining CO2 conversion and N2 fixation in a gliding arc plasmatron, Journal of CO2 Utilization, 33 (2019) 121-130.
- M. Mlotek, M. Perron, K. Krawczyk, Ammonia decomposition in a gliding discharge plasma, Energy Technology, 9 (2021) 2100677.
- L. Wang, Y. Yi, Y. Zhao, R. Zhang, J. Zhang, H. Guo, NH3 decomposition for H2 generation: effects of cheap metals and supports on plasma-catalyst synergy, ACS Catalysis, 5 (2015) 4167-4174.
- K.H. Lim, Y. Yue, B. Gao, T. Zhang, F. Hu, S. Das, S. Kawi, Sustainable hydrogen and ammonia technologies with nonthermal plasma catalysis: mechanistic insights and technoeconomic analysis, ACS Sustainable Chemistry & Engineering, 11 (2023) 4903-4933.
- M. Akiyama, K. Aihara, T. Sawaguchi, M. Matsukata, M. Iwamoto, Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma, International Journal of Hydrogen Energy, 43 (2018) 14493-14497.
- Q.F. Lin, Y.M. Jiang, C.Z. Liu, L.W. Chen, W.J. Zhang, J. Ding, J.G. Li, Instantaneous hydrogen production from ammonia by non-thermal arc plasma combining with catalyst, Energy Reports, 7 (2021) 4064-4070.
- S. Meng, S. Li, S. Sun, A. Bogaerts, Y. Liu, Y. Yi, NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts, Chemical Engineering Science, 283 (2024) 119449.
- T. Nozaki, K. Okazaki, Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications, Catalysis Today, 211 (2013) 29-38.
- D.H. Lee, H. Kang, Y. Kim, H. Song, H. Lee, J. Choi, K.T. Kim, Y.H. Song, Plasma-assisted hydrogen generation: a mechanistic review, Fuel Processing Technology, 247 (2023) 107761.
- D.H. Lee, Y.H. Song, K.T. Kim, J.O. Lee, Comparative study of methane activation process by different plasma sources, Plasma Chemistry and Plasma Processing, 33 (2013) 647-661.
- H.J. Lee, S.P. Kang, T.H. Kim, Numerical analysis of ammonia decomposition and hydrogen conversion system using DC thermal plasma, 25th International Symposium on Plasma Chemistry (ISPC25), May 21st-26th, Kyoto, Japan, (2023) POS-2-208.