DOI QR코드

DOI QR Code

Sustainable ammonia hydrogen production technology using plasma

플라즈마를 이용한 지속가능한 암모니아 수소 생산 기술

  • Han Jun Lee (Department of Chemical Engineering, Wonkwang University) ;
  • Tae-Hee Kim (Department of Chemical Engineering, Wonkwang University)
  • 이한준 (원광대학교 화학공학과) ;
  • 김태희 (원광대학교 화학공학과)
  • Received : 2024.08.14
  • Accepted : 2024.09.25
  • Published : 2024.10.31

Abstract

Hydrogen is an alternative energy source to achieve decarbonization. However, storage and transportation costs are expensive. Hydrogen carriers are attracting attention for cost-effective hydrogen production, and ammonia is the most promising material. This article explores the potential of sustainable hydrogen production through ammonia decomposition using various plasma sources with/without catalysts, and compares the hydrogen production efficiency including dielectric barrier discharge(DBD), microwave plasma, and gliding arc discharge. Additionally, we evaluate the technology readiness levels(TRLs) of these plasma processes compared to other existing ammonia decomposition technologies such as only catalytic methods and electrolysis. The results reveal the advantages and limitations of each source in terms of energy efficiency and scalability. In addition, we suggest the possibility of thermal plasma for the large-scale hydrogen production. Our findings provide valuable insights into the feasibility and practical implementation of plasma technologies for sustainable hydrogen production, contributing to the advancement of clean energy solutions and the reduction of global carbon emissions.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2022M3J8A1097260).

References

  1. X. Zhao, X. Ma, B. Chen, Y. Shang, M. Song, Challenges toward carbon neutrality in China: Strategies and countermeasures, Resources, Conservation & Recycling, 176 (2022) 105959. 
  2. N.W. Arnell, J.A. Lowe, B. Lloyd-Hughes, T.J. Osborn, The impacts avoided with a 1.5 ℃ climate target: A global and regional assessment, Climatic Change, 147 (2018) 61-76. 
  3. S. Sgouridis, D. Csala, U. Bardi, The sower's way: Quantifying the narrowing net-energy pathways to a global energy transition, Environmental Research Letters, 11 (2016) 094009. 
  4. M.Z. Jacobson, M.A. Delucchi, Providing all global energy with wind, water, and solar power, part I: Technologies, energy resources, quantities and areas of infrastructure, and materials, Energy Policy, 39 (2011) 1154-1169. 
  5. J.O'.M. Bockris, The hydrogen economy: Its history, International Journal of Hydrogen Energy, 38 (2013) 2579-2588. 
  6. I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12 (2019) 463-491. 
  7. S. van Renssen, The hydrogen solution?, Nature Climate Change, 10 (2020) 799-801. 
  8. E. Spatolisano, G.D. Guido, L.A. Pellegrini, V. Calemma, A.R. de Angelis, M. Nali, Process sensitivity analysis and techno-economic assessment of hydrogen sulphide to hydrogen via H2S methane reformation, Journal of Cleaner Production, 330 (2022) 129889. 
  9. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Development of high pressure gaseous hydrogen storage technologies, International Journal of Hydrogen Energy, 37 (2012) 1048-1057. 
  10. A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91 (2004) 157-172. 
  11. M.G. Nijkamp, J.E.M.J. Raaymakers, A.J. van Dillen, K.P. de Jong, Hydrogen storage using physisorption-materials demands, Applied Physics A: Materials Science & Processing, 72 (2001) 619-623. 
  12. L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks, Chemical Society Reviews, 38 (2009) 1294-1314. 
  13. J.O. Jensen, A.P. Vsetbo, Q. Li, N.J. Bjerrum, The energy efficiency of onboard hydrogen storage, Journal of Alloys and Compounds, 446-447 (2007) 723-728. 
  14. R.B. Biniwale, S. Rayalu, S. Devotta, M. Ichikawa, Chemical hydrides: A solution to high capacity hydrogen storage and supply, International Journal of Hydrogen Energy, 33 (2008) 360-365. 
  15. R. Lan, J.T.S. Irvine, S. Tao, Ammonia and related chemicals as potential indirect hydrogen storage materials, International Journal of Hydrogen Energy, 37 (2012) 1482-1494. 
  16. E. Spatolisano, L.A. Pellegrini, A.R. de Angelis, S. Cattaneo, E. Roccaro, Ammonia as a carbon-free energy carrier: NH3 cracking to H2, Industrial & Engineering Chemistry Research, 62 (2023) 10813-10827. 
  17. M.L. Carreon, Plasma catalytic ammonia synthesis: state of the art and future directions, Journal of Physics D: Applied Physics, 52 (2019) 483001. 
  18. A. Barona, B. Etxebarria, A. Aleksanyan, G. Gallastegui, N. Rojo, E. Diaz-Tena, A unique historical case to understand the present sustainable development, Science and Engineering Ethics, 24 (2018) 261-274. 
  19. R. Kumar, R. Singh, S. Dutta, Review and outlook of hydrogen production through catalytic processes, Energy & Fuels, 38 (2024) 2601-2629. 
  20. R. Snoeckx, A. Bogaerts, Plasma technology-a novel solution for CO2 conversion?, Chemical Society Reviews, 46 (2017) 5805-5863. 
  21. J. Hong, S. Prawer, A.B. Murphy, Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress, ACS Sustainable Chemistry & Engineering, 6 (2018) 15-31. 
  22. I. Lucentini, X. Garcia, X. Vendrell, J. Llorca, Review of the decomposition of ammonia to generate hydrogen, Industrial & Engineering Chemistry Research, 60 (2021) 18560-18611. 
  23. S. Peters, A.M. Adel-Mageed, S. Wohlrab, Thermocatalytic ammonia decomposition-status and current research demands for a carbon-free hydrogen fuel technology, ChemCatChem, 15 (2023) e202201185. 
  24. A. Bogaerts, E.C. Neyts, Plasma technology: an emerging technology for energy storage, ACS Energy Letters, 3 (2018) 1013-1027. 
  25. S. Bang, R. Snoeckx, M.S. Cha, Kinetic study for plasma-assisted cracking of NH3: approaches and challenges, Journal of Physical Chemistry A, 127 (2023) 1271-1282. 
  26. M. Benes, G. Pozo, M. Abian, A. Millera, R. Bilbao, M.U. Alzueta, Experimental study of the pyrolysis of NH3 under flow reactor conditions, Energy & Fuels, 35 (2021) 7193-7200. 
  27. J.A. Andersen, K. van 't Veer, J.M. Christensen, M. Ostberg, A. Bogaerts, A.D. Jensen, Ammonia decomposition in a dielectric barrier discharge plasma: insights from experiments and kinetic modeling, Chemical Engineering Science, 271 (2023) 118550. 
  28. A.A. Zamri, M.Y. Ong, S. Nomanbhay, P.L. Show, Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: a review, Environmental Research, 197 (2021) 111204. 
  29. X. Zhang, M.S. Cha, Ammonia cracking for hydrogen production using a microwave argon plasma jet, Journal of Physics D: Applied Physics, 57 (2024) 065203. 
  30. M. Ramakers, S. Heijkers, T. Tytgat, S. Lenaerts, A. Bogaerts, Combining CO2 conversion and N2 fixation in a gliding arc plasmatron, Journal of CO2 Utilization, 33 (2019) 121-130. 
  31. M. Mlotek, M. Perron, K. Krawczyk, Ammonia decomposition in a gliding discharge plasma, Energy Technology, 9 (2021) 2100677. 
  32. L. Wang, Y. Yi, Y. Zhao, R. Zhang, J. Zhang, H. Guo, NH3 decomposition for H2 generation: effects of cheap metals and supports on plasma-catalyst synergy, ACS Catalysis, 5 (2015) 4167-4174. 
  33. K.H. Lim, Y. Yue, B. Gao, T. Zhang, F. Hu, S. Das, S. Kawi, Sustainable hydrogen and ammonia technologies with nonthermal plasma catalysis: mechanistic insights and technoeconomic analysis, ACS Sustainable Chemistry & Engineering, 11 (2023) 4903-4933. 
  34. M. Akiyama, K. Aihara, T. Sawaguchi, M. Matsukata, M. Iwamoto, Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma, International Journal of Hydrogen Energy, 43 (2018) 14493-14497. 
  35. Q.F. Lin, Y.M. Jiang, C.Z. Liu, L.W. Chen, W.J. Zhang, J. Ding, J.G. Li, Instantaneous hydrogen production from ammonia by non-thermal arc plasma combining with catalyst, Energy Reports, 7 (2021) 4064-4070. 
  36. S. Meng, S. Li, S. Sun, A. Bogaerts, Y. Liu, Y. Yi, NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts, Chemical Engineering Science, 283 (2024) 119449. 
  37. T. Nozaki, K. Okazaki, Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications, Catalysis Today, 211 (2013) 29-38. 
  38. D.H. Lee, H. Kang, Y. Kim, H. Song, H. Lee, J. Choi, K.T. Kim, Y.H. Song, Plasma-assisted hydrogen generation: a mechanistic review, Fuel Processing Technology, 247 (2023) 107761. 
  39. D.H. Lee, Y.H. Song, K.T. Kim, J.O. Lee, Comparative study of methane activation process by different plasma sources, Plasma Chemistry and Plasma Processing, 33 (2013) 647-661.
  40. H.J. Lee, S.P. Kang, T.H. Kim, Numerical analysis of ammonia decomposition and hydrogen conversion system using DC thermal plasma, 25th International Symposium on Plasma Chemistry (ISPC25), May 21st-26th, Kyoto, Japan, (2023) POS-2-208.