DOI QR코드

DOI QR Code

유효응력을 고려한 동해석을 통한 직립식 방파제의 동적 거동에 대한 연구

A Study on the Dynamic Behaviour of Composite Breakwaters Based on Dynamic Analysis Considering Effective Stresses

  • Youngjin Jeon (College Institute of Industrial Technology, Kangwon National University)
  • 투고 : 2024.10.11
  • 심사 : 2024.10.21
  • 발행 : 2024.11.01

초록

본 연구에서는 유효응력을 고려한 동해석이 직립식 방파제의 동적 거동에 미치는 영향에 대하여 유한차분해석을 실시함으로써 검증하였다. 비교를 위해 Kobe 지진으로 인한 방파제 거동과 원심모형실험 데이터를 통한 성능기반 내진설계 검증 및 parametric study를 수행하였다. Kobe 지진으로 피해를 본 직립식 방파제에 대하여 유효응력 해석을 근거하여 수치해석으로 검증하였고 원심모형시험 및 수치해석 기법에 대한 검증을 수행하였다. 수치해석 분석을 통해 성능기반 내진설계를 기반으로 한 지진 저항성을 확인하였으며, 수직변위 및 과잉간극수압을 통한 액상화 현상 등 유사한 결과를 도출하였다. 또한 지진 시 직립식 방파제의 거동 결과를 성능기반 내진설계를 바탕으로 가속도, 변위, 간극수압, 및 액상화의 유무 결과를 상세히 분석하였다. 따라서 본 연구의 목적인 유효응력 해석을 통해 액상화의 유무를 확인하고자 Finn model의 적용 또는 비적용을 통해 간극수압의 크기와 액상화 판단을 확인하였다.

In the current work, finite difference analysis was conducted by investigating the influence of dynamic analysis, considering effective stress, on the dynamic response of composite breakwaters. For comparison, the seismic behavior of breakwaters during the Kobe earthquake was analyzed, and performance-based seismic design was validated through centrifuge model test data, accompanied by a parametric study. The composite breakwaters damaged by the Kobe earthquake were verified through numerical analysis based on effective stress analysis, and validation of both centrifuge model tests and numerical analysis methods was conducted. The results of numerical analysis confirmed the seismic resistance based on the performance-based. And the results of analysis identified similar vertical displacement and liquefaction have confirmed through excess pore pressures. Also this study was conducted on the based on performance-based seismic deign, focusing on the results of acceleration, displacement, pore pressure, and liquefaction. Therefore the purpose of this study is to verify the results of pore pressure and liquefaction through the application and non-application of Finn model to compare the determination of liquefaction by the effective stress analysis.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2023-00278033). 또한 2024년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2022R1A6A3A01085973).

참고문헌

  1. 기존 시설물(항만) 내진성능 평가 및 향상요령(안) (2012), 국토해양부.
  2. Byrne, P.M. (1991), A cyclic shear-volume coupling and pore-pressure model for sand, Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, No. 1, pp. 47~55.
  3. Cho, Y.J. and Na, D.G. (2015), Numerical analysis of the depression effect of hybrid breaker on the run up height due to Tsunami based on the modified leading depression N (LDN) wave generation technique, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 27, No. 1, pp. 38~49 (in Korean).
  4. Dokanish, M.A. and Subbaraj, K. (1989), A survey of direct time-integration methods in computational structural dynamics - II Implicit methods, Computers and Structures, Vol. 32, No. 6, pp. 1387~1401.
  5. Ishihara, K. (1995), Terazghi oration : Geotechnical aspects of the 1995 Kobe earthquake, 14th International Conference on Soil Mechanics and Foundation Engineering ICSMFE, Hamburg, Germany, pp. 2047~2073.
  6. Inagaki, H., Iai, S., Sugano, T., Yamazaki, H. and Inatomi T. (1996), Performance of caisson type quay walls at Kobe port. Soil and Foundations. Vol. 36, pp. 119~136.
  7. Iai, S., Ichii, K., Liu, H. and Morita, T. (1998), Effective stress analysis of port structures, Special Issue of Soils and Foundations, pp. 97~114.
  8. Itasca Consulting Group (2018), FLAC 2D (Fast Lagrangian Analysis of Continua in 2 Dimensions) User's Guide, Minnesota, USA.
  9. Kim, S.H., Yi, J.H. and Kim, D.K. (2005), Probabilistic seismic risk analysis of breakwater structures, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 17, No. 1, pp. 32~40 (in Korean).
  10. Kim, D.H., Cho, H.Y., Kim, D.K. and Cho, B.I. (2007), Seismic risk analysis of steel pile type pier, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 19, No. 3, pp. 237~243 (in Korean).
  11. Kim, D.S., Kim, N.R., Choo, Y.W. and Cho, G.C. (2013), A newly developed state-of-the-art geotechnical centrifuge in Korea, KSCE Journal of Civil Engineering, Vol. 17, pp. 77~84 (in Korean).
  12. Kim, S.Y. and Kim, D.H. (2017), Seismic risk analysis of quay wall considering effective stress, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 29, No. 1, pp. 1~11 (in Korean).
  13. Lee, J.S. and Noh, G.D. (2016), Evaluation of caisson quay wall behavior during the 1995 Kobe earthquake by nonlinear effective stress analysis, Journal of the Earthquke Engineering Society of Korea, Vol. 20, No. 6, pp. 401~412 (in Korean).
  14. Martin, G.R, Finn, W.D.L., and Seed, H.B. (1975), Fundamentals of liquefaction under cyclic loading. ASCE Journal of the Geotechnical Engineering Division, Vol. 101, No. 5, pp. 423~438.
  15. Ministry of Oceans and Fisheries (1999), Seismic design standards of harbor and port (in Korean).
  16. Ministry of Oceans and Fisheries (2014), Engineering standards Commentaries Port and Harbor Facilities (in Korean).
  17. The January 17-1995 Kobe earthquake - An EQE International summary report: EQE International (1995), pp. 2047~2073.
  18. Wu, J., Kammerer, A.M., Riemer, M.F., Seed, R.B. and Pestana, J.M. (2004), Laboratory study of liquefaction triggering criteria, 13th World Conference on Earthquake Engineering Vancouver BC, Canada, Paper No. 2580.