References
- M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan, 2017.
- G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov. Trainable cosfire filters for vessel delineation with application to retinal images. Medical image analysis, 19(1):46-57, 2015.
- P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS one, 7(3):e32435, 2012.
- C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A.Hammers,D.A.Dickie,M.V.Hernandez,J.Wardlaw, and D. Rueckert. Gan augmentation: Augmenting training data using generative adversarial networks. arXiv preprint arXiv:1810.10863, 2018.
- P. Chudzik, B. Al-Diri, F. Caliva, and A. Hunter. Discern: Generative framework for vessel segmentation using convolutional neural network and visual codebook. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5934-5937. IEEE, 2018.
- M. Fraz, P. Remagnino, A. Hoppe, and S. Barman. Retinal image analysis aimed at extraction of vascular structure using linear discriminant classifier. In 2013 International Conference on Computer Medical Applications (ICCMA), pages 1-6. IEEE, 2013.
- M. M. Fraz, A. R. Rudnicka, C. G. Owen, and S. A. Barman. Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. International journal of computer assisted radiology and surgery, 9(5):795-811, 2014.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014.
- G. HaoQi and K. Ogawara. Cgan-based synthetic medical image augmentation between retinal fundus images and vessel segmented images. In 2020 5th International Conference on Control and Robotics Engineering (ICCRE), pages 218- 223. IEEE, 2022.
- A. Hoover, V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical imaging, 19(3):203-210, 2000.
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125-1134, 2017.
- Q. Jin, Z. Meng, T. D. Pham, Q. Chen, L. Wei, and R. Su. Dunet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 178:149-162, 2019.
- S. Lian, L. Li, G. Lian, X. Xiao, Z. Luo, and S. Li. A global and local enhanced residual u-net for accurate retinal vessel segmentation. IEEE/ACM transactions on computational biology and bioinformatics, 2019.
- J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431-3440, 2015.
- L. Luo, D. Chen, and D. Xue. Retinal blood vessels semantic segmentation method based on modified unet. In 2018 Chinese Control And Decision Conference (CCDC), pages 1892-1895. IEEE, 2018.
- D. Mahapatra and J. M. Buhmann. Obtaining consensus annotations for retinal image segmentation using random forest and graph cuts. 2015.
- X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least squares generative adversarial networks, 2016.
- A. T. Nair and K. Muthuvel. Blood vessel segmentation and diabetic retinopathy recognition: an intelligent approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8(2):169-181, 2020.
- A. Oliveira, S. Pereira, and C. A. Silva. Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications, 112:229-242, 2018.
- C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup, J. Ng, and C. Paterson. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Investigative ophthalmology & visual science, 50(5):2004-2010, 2009.
- A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
- O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234-241. Springer, 2015.
- V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers. Data augmentation using generative adversarial networks (cyclegan) to improve generalizability in ct segmentation tasks. Scientific reports, 9(1):1-9, 2023.
- S. Sangeethaa and P. U. Maheswari. An intelligent model for blood vessel segmentation in diagnosing dr using cnn. Journal of medical systems, 42(10):175, 2018.
- T. Silva. An intuitive introduction to generative adversarial networks (gans). freeCodeCamp.org, 2018.
- C. L. Srinidhi, P. Aparna, and J. Rajan. Recent advancements in retinal vessel segmentation. Journal of medical systems, 41(4):70, 2017.
- J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, 23(4):501-509, 2004.
- K.Wisaeng,N.Hiransakolwong,andE.Pothiruk.Automa tic detection of exudates in retinal images based on threshold moving average models. Biophysics, 60(2):288-297, 2015.
- H. Yazid, H. Arof, and H. M. Isa. Automated identification of exudates and optic disc based on inverse surface thresholding. Journal of medical systems, 36(3):1997-2004, 2012.
- H. Yu, E. S. Barriga, C. Agurto, S. Echegaray, M. S. Pattichis, W. Bauman, and P. Soliz. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Transactions on information technology in biomedicine, 16(4):644-657, 2012.
- L. Zhou, Q. Yu, X. Xu, Y. Gu, and J. Yang. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Computer methods and programs in biomedicine, 148:13- 25, 2017.