DOI QR코드

DOI QR Code

Enhancing Retinal Fundus Image Segmentation Using GAN

  • Manal AlGhamdi (Department of Computer Science and Artificial Intelligence, University of Umm AL-Qura)
  • Received : 2024.10.05
  • Published : 2024.10.30

Abstract

Retinal vessel analysis plays a vital role in the detection of some diseases. For example, diabetic retinopathy which may lead to blindness is one of the most common diseases that cause retinal blood vessel structure to change. However, doctors usually take a lot of time and money to collect and label training sets. Thus, automated vessel segmentation as the first step toward computer-aided analysis of fundus remains an active research avenue. We propose an automated Retinal vessel segmentation method based on the GAN network. Traditional image segmentation networks are unsupervised, and GAN is a new semi-supervised network due to adding a Discriminator. By training the discriminator network, we can capture the quality of the generator's output and drive it closer to the true image features. In our experiment, we use DRIVE dataset for training and testing. The final segmentation effect is represented by the Dice coefficient. Experimental results show that the GAN network can effectively improve the edge effect of image segmentation. Compared with the traditional U-net network, GAN shows about 1.55% higher segmentation accuracy.

Keywords

References

  1. M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan, 2017. 
  2. G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov. Trainable cosfire filters for vessel delineation with application to retinal images. Medical image analysis, 19(1):46-57, 2015. 
  3. P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS one, 7(3):e32435, 2012. 
  4. C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A.Hammers,D.A.Dickie,M.V.Hernandez,J.Wardlaw, and D. Rueckert. Gan augmentation: Augmenting training data using generative adversarial networks. arXiv preprint arXiv:1810.10863, 2018. 
  5. P. Chudzik, B. Al-Diri, F. Caliva, and A. Hunter. Discern: Generative framework for vessel segmentation using convolutional neural network and visual codebook. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5934-5937. IEEE, 2018. 
  6. M. Fraz, P. Remagnino, A. Hoppe, and S. Barman. Retinal image analysis aimed at extraction of vascular structure using linear discriminant classifier. In 2013 International Conference on Computer Medical Applications (ICCMA), pages 1-6. IEEE, 2013. 
  7. M. M. Fraz, A. R. Rudnicka, C. G. Owen, and S. A. Barman. Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. International journal of computer assisted radiology and surgery, 9(5):795-811, 2014. 
  8. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014. 
  9. G. HaoQi and K. Ogawara. Cgan-based synthetic medical image augmentation between retinal fundus images and vessel segmented images. In 2020 5th International Conference on Control and Robotics Engineering (ICCRE), pages 218- 223. IEEE, 2022. 
  10. A. Hoover, V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical imaging, 19(3):203-210, 2000. 
  11. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125-1134, 2017. 
  12. Q. Jin, Z. Meng, T. D. Pham, Q. Chen, L. Wei, and R. Su. Dunet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 178:149-162, 2019. 
  13. S. Lian, L. Li, G. Lian, X. Xiao, Z. Luo, and S. Li. A global and local enhanced residual u-net for accurate retinal vessel segmentation. IEEE/ACM transactions on computational biology and bioinformatics, 2019. 
  14. J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431-3440, 2015. 
  15. L. Luo, D. Chen, and D. Xue. Retinal blood vessels semantic segmentation method based on modified unet. In 2018 Chinese Control And Decision Conference (CCDC), pages 1892-1895. IEEE, 2018. 
  16. D. Mahapatra and J. M. Buhmann. Obtaining consensus annotations for retinal image segmentation using random forest and graph cuts. 2015. 
  17. X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least squares generative adversarial networks, 2016. 
  18. A. T. Nair and K. Muthuvel. Blood vessel segmentation and diabetic retinopathy recognition: an intelligent approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8(2):169-181, 2020. 
  19. A. Oliveira, S. Pereira, and C. A. Silva. Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications, 112:229-242, 2018. 
  20. C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup, J. Ng, and C. Paterson. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Investigative ophthalmology & visual science, 50(5):2004-2010, 2009. 
  21. A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 
  22. O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234-241. Springer, 2015. 
  23. V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers. Data augmentation using generative adversarial networks (cyclegan) to improve generalizability in ct segmentation tasks. Scientific reports, 9(1):1-9, 2023. 
  24. S. Sangeethaa and P. U. Maheswari. An intelligent model for blood vessel segmentation in diagnosing dr using cnn. Journal of medical systems, 42(10):175, 2018. 
  25. T. Silva. An intuitive introduction to generative adversarial networks (gans). freeCodeCamp.org, 2018. 
  26. C. L. Srinidhi, P. Aparna, and J. Rajan. Recent advancements in retinal vessel segmentation. Journal of medical systems, 41(4):70, 2017. 
  27. J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, 23(4):501-509, 2004. 
  28. K.Wisaeng,N.Hiransakolwong,andE.Pothiruk.Automa tic detection of exudates in retinal images based on threshold moving average models. Biophysics, 60(2):288-297, 2015. 
  29. H. Yazid, H. Arof, and H. M. Isa. Automated identification of exudates and optic disc based on inverse surface thresholding. Journal of medical systems, 36(3):1997-2004, 2012. 
  30. H. Yu, E. S. Barriga, C. Agurto, S. Echegaray, M. S. Pattichis, W. Bauman, and P. Soliz. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Transactions on information technology in biomedicine, 16(4):644-657, 2012. 
  31. L. Zhou, Q. Yu, X. Xu, Y. Gu, and J. Yang. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Computer methods and programs in biomedicine, 148:13- 25, 2017.