참고문헌
- S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Mu ̈ller, and W. Samek. On pixel-wise explanations for non- linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.
- A. Barredo Arrieta, N. D ́iaz-Rodr ́iguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Ex- plainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Information Fusion, 58:82 - 115, 2020.
- L. Chen, P. Bentley, and D. Rueckert. Fully automatic acute ischemic lesion segmentation in dwi using convolutional neural networks. NeuroImage: Clinical, 15:633-643, 2017.
- A. Dosovitskiy and T. Brox. Inverting convolutional networks with convolutional networks. arXiv preprint arXiv:1506.02753, 4, 2015.
- M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P. Beck. The role of trust in automation reliance. International journal of human-computer studies, 58(6):697-718, 2003.
- C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Hauptmann. Devnet: A deep event network for multimedia event detection and evidence recounting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
- A. D. Hoover, V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3):203-210, 2000.
- C. J. Kelly, A. Karthikesalingam, M. Suleyman, G. Corrado, and D. King. Key challenges for delivering clinical impact with artificial intelligence. BMC medicine, 17(1):195, 2019.
- P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schu ̈tt, S. Dahne, D. Erhan, and B. Kim. The (un) reliability of saliency methods. arXiv preprint arXiv:1711.00867, 2017.
- A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5188-5196, 2015.
- A. Mahendran and A. Vedaldi. Salient deconvolutional networks. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision - ECCV 2016, pages 120-135, Cham, 2016. Springer International Publishing.
- K.-K. Maninis, J. Pont-Tuset, P. Arbelaez, and L. Van Gool. Deep retinal image understanding. In S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, editors, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, pages 140-148, Cham, 2016. Springer International Publishing.
- K.-K. Maninis, J. Pont-Tuset, P. Arbelaez, and L. Van Gool. Deep retinal image understanding. In International conference on medical image computing and computer-assisted intervention, pages 140-148. Springer, 2016.
- M. T. Ribeiro, S. Singh, and C. Guestrin." why should i trust you?" explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135- 1144, 2016.
- O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234-241. Springer, 2015.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
- K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps, 2013.
- J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried- miller. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.
- J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, 23(4):501-509, 2004.
- E. Tjoa and C. Guan. A survey on explainable artificial intelligence (xai): towards medical xai. arXiv preprint arXiv:1907.07374, 2019.
- S. Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of the IEEE international conference on computer vision, pages 1395-1403, 2015.
- M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision - ECCV 2014, pages 818-833, Cham, 2014. Springer International Publishing.
- B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.